Structured barycentric forms for interpolation-based data-driven reduced modeling of second-order systems

An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in computational mathematics 2024-04, Vol.50 (2), Article 26
Hauptverfasser: Gosea, Ion Victor, Gugercin, Serkan, Werner, Steffen W. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using their frequency domain input-output data. By imposing a set of interpolation conditions, the systems’ transfer functions are rewritten in different barycentric forms using different parametrizations. Loewner-like algorithms are developed for the explicit computation of second-order systems from data based on the developed barycentric forms. Numerical experiments show the performance of these new structured data-driven modeling methods compared to other interpolation-based data-driven modeling techniques from the literature.
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-024-10118-7