Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble

The increase in extreme precipitation with global warming (GW) and associated uncertainties are major challenges for climate adaptation. To project future extreme precipitation on different time and intensity scales (return periods [RPs] from 1 to 100 a and durations from 1 h to 3 days), we use a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of climatology 2024-04, Vol.44 (5), p.1454-1471
Hauptverfasser: Hundhausen, Marie, Feldmann, Hendrik, Kohlhepp, Regina, Pinto, Joaquim G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1471
container_issue 5
container_start_page 1454
container_title International journal of climatology
container_volume 44
creator Hundhausen, Marie
Feldmann, Hendrik
Kohlhepp, Regina
Pinto, Joaquim G.
description The increase in extreme precipitation with global warming (GW) and associated uncertainties are major challenges for climate adaptation. To project future extreme precipitation on different time and intensity scales (return periods [RPs] from 1 to 100 a and durations from 1 h to 3 days), we use a novel convection‐permitting (CP), multi‐global climate model ensemble of COSMO‐CLM regional simulations with a transient projection time (1971–2100) over Germany. We find an added value of the CP scale (2.8 km) with respect to the representation of hourly extreme precipitation intensities compared to the coarser scale with parametrized deep convection (7 km). In general, the return levels (RLs) calculated from the CP simulations are in better agreement with those of the conventional observation‐based risk products for the region for short event durations than for longer durations, where an overestimation by the simulation‐based results was found. A maximum climate change signal of 6–8.5% increase per degree of GW is projected within the CP ensemble, with the largest changes expected for short durations and long RPs. Analysis of the uncertainty in the climate change signal shows a substantial residual standard deviation of a linear approximation, highlighting the need for transient data sets instead of time‐slice experiments to increase confidence in the estimates. Furthermore, the ensemble spread is found to be smallest for intensities of short duration, where changes are expected to be based mainly on thermodynamic contributions. The ensemble spread is larger for long, multi‐day durations, where a stronger dependence on the dynamical component is ascribed. In addition, an increase in spatial variance of the RLs with GW implies a more variable future climate and points to an increasing importance of accounting for uncertainties.
doi_str_mv 10.1002/joc.8393
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037294002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037294002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-319752418ea33049d73d7e2bb1ebb4315ed711f48289bcbff00aeb90a2c7ce2e3</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKvgJwTcuJn6kkydZClFqyC40fWQpG9qykwyJqnozoUf4Df6JabU1ducdy_3EHLOYMYA-NUm2JkUShyQCQPVVABSHpIJSKUqWTN5TE5S2gCAUux6Qr4XvRt0RmpftV8jTW7tdZ9o6Ch-5IgD0jGidaPLOrvgacS8jZ72-I4F60KkS4yD9p_Ueappjtonhz5TG_w72t3P79fPWBiXs_Pr0jBs-30W-oSD6fGUHHWlFM_-75S83N0-L-6rx6flw-LmsbJ8DrkSTDVzXjagFgJqtWrEqkFuDENjasHmuGoY62rJpTLWdB2ARqNAc9tY5Cim5GKfO8bwtsWU200oY0plK0A0XNXFYKEu95SNIaWIXTvG4ih-tgzanePyZdudY_EHfjpzlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037294002</pqid></control><display><type>article</type><title>Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hundhausen, Marie ; Feldmann, Hendrik ; Kohlhepp, Regina ; Pinto, Joaquim G.</creator><creatorcontrib>Hundhausen, Marie ; Feldmann, Hendrik ; Kohlhepp, Regina ; Pinto, Joaquim G.</creatorcontrib><description>The increase in extreme precipitation with global warming (GW) and associated uncertainties are major challenges for climate adaptation. To project future extreme precipitation on different time and intensity scales (return periods [RPs] from 1 to 100 a and durations from 1 h to 3 days), we use a novel convection‐permitting (CP), multi‐global climate model ensemble of COSMO‐CLM regional simulations with a transient projection time (1971–2100) over Germany. We find an added value of the CP scale (2.8 km) with respect to the representation of hourly extreme precipitation intensities compared to the coarser scale with parametrized deep convection (7 km). In general, the return levels (RLs) calculated from the CP simulations are in better agreement with those of the conventional observation‐based risk products for the region for short event durations than for longer durations, where an overestimation by the simulation‐based results was found. A maximum climate change signal of 6–8.5% increase per degree of GW is projected within the CP ensemble, with the largest changes expected for short durations and long RPs. Analysis of the uncertainty in the climate change signal shows a substantial residual standard deviation of a linear approximation, highlighting the need for transient data sets instead of time‐slice experiments to increase confidence in the estimates. Furthermore, the ensemble spread is found to be smallest for intensities of short duration, where changes are expected to be based mainly on thermodynamic contributions. The ensemble spread is larger for long, multi‐day durations, where a stronger dependence on the dynamical component is ascribed. In addition, an increase in spatial variance of the RLs with GW implies a more variable future climate and points to an increasing importance of accounting for uncertainties.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.8393</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Approximation ; Climate adaptation ; Climate change ; Climate change adaptation ; Climate models ; Convection ; Extreme weather ; Future climates ; Global climate ; Global climate models ; Global warming ; Mathematical analysis ; Precipitation ; Precipitation intensity ; Rainfall intensity ; Simulation ; Uncertainty</subject><ispartof>International journal of climatology, 2024-04, Vol.44 (5), p.1454-1471</ispartof><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-319752418ea33049d73d7e2bb1ebb4315ed711f48289bcbff00aeb90a2c7ce2e3</cites><orcidid>0000-0001-5400-3088 ; 0000-0001-6987-7351 ; 0000-0002-8865-1769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hundhausen, Marie</creatorcontrib><creatorcontrib>Feldmann, Hendrik</creatorcontrib><creatorcontrib>Kohlhepp, Regina</creatorcontrib><creatorcontrib>Pinto, Joaquim G.</creatorcontrib><title>Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble</title><title>International journal of climatology</title><description>The increase in extreme precipitation with global warming (GW) and associated uncertainties are major challenges for climate adaptation. To project future extreme precipitation on different time and intensity scales (return periods [RPs] from 1 to 100 a and durations from 1 h to 3 days), we use a novel convection‐permitting (CP), multi‐global climate model ensemble of COSMO‐CLM regional simulations with a transient projection time (1971–2100) over Germany. We find an added value of the CP scale (2.8 km) with respect to the representation of hourly extreme precipitation intensities compared to the coarser scale with parametrized deep convection (7 km). In general, the return levels (RLs) calculated from the CP simulations are in better agreement with those of the conventional observation‐based risk products for the region for short event durations than for longer durations, where an overestimation by the simulation‐based results was found. A maximum climate change signal of 6–8.5% increase per degree of GW is projected within the CP ensemble, with the largest changes expected for short durations and long RPs. Analysis of the uncertainty in the climate change signal shows a substantial residual standard deviation of a linear approximation, highlighting the need for transient data sets instead of time‐slice experiments to increase confidence in the estimates. Furthermore, the ensemble spread is found to be smallest for intensities of short duration, where changes are expected to be based mainly on thermodynamic contributions. The ensemble spread is larger for long, multi‐day durations, where a stronger dependence on the dynamical component is ascribed. In addition, an increase in spatial variance of the RLs with GW implies a more variable future climate and points to an increasing importance of accounting for uncertainties.</description><subject>Approximation</subject><subject>Climate adaptation</subject><subject>Climate change</subject><subject>Climate change adaptation</subject><subject>Climate models</subject><subject>Convection</subject><subject>Extreme weather</subject><subject>Future climates</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Mathematical analysis</subject><subject>Precipitation</subject><subject>Precipitation intensity</subject><subject>Rainfall intensity</subject><subject>Simulation</subject><subject>Uncertainty</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKvgJwTcuJn6kkydZClFqyC40fWQpG9qykwyJqnozoUf4Df6JabU1ducdy_3EHLOYMYA-NUm2JkUShyQCQPVVABSHpIJSKUqWTN5TE5S2gCAUux6Qr4XvRt0RmpftV8jTW7tdZ9o6Ch-5IgD0jGidaPLOrvgacS8jZ72-I4F60KkS4yD9p_Ueappjtonhz5TG_w72t3P79fPWBiXs_Pr0jBs-30W-oSD6fGUHHWlFM_-75S83N0-L-6rx6flw-LmsbJ8DrkSTDVzXjagFgJqtWrEqkFuDENjasHmuGoY62rJpTLWdB2ARqNAc9tY5Cim5GKfO8bwtsWU200oY0plK0A0XNXFYKEu95SNIaWIXTvG4ih-tgzanePyZdudY_EHfjpzlw</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Hundhausen, Marie</creator><creator>Feldmann, Hendrik</creator><creator>Kohlhepp, Regina</creator><creator>Pinto, Joaquim G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5400-3088</orcidid><orcidid>https://orcid.org/0000-0001-6987-7351</orcidid><orcidid>https://orcid.org/0000-0002-8865-1769</orcidid></search><sort><creationdate>202404</creationdate><title>Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble</title><author>Hundhausen, Marie ; Feldmann, Hendrik ; Kohlhepp, Regina ; Pinto, Joaquim G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-319752418ea33049d73d7e2bb1ebb4315ed711f48289bcbff00aeb90a2c7ce2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Climate adaptation</topic><topic>Climate change</topic><topic>Climate change adaptation</topic><topic>Climate models</topic><topic>Convection</topic><topic>Extreme weather</topic><topic>Future climates</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Mathematical analysis</topic><topic>Precipitation</topic><topic>Precipitation intensity</topic><topic>Rainfall intensity</topic><topic>Simulation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hundhausen, Marie</creatorcontrib><creatorcontrib>Feldmann, Hendrik</creatorcontrib><creatorcontrib>Kohlhepp, Regina</creatorcontrib><creatorcontrib>Pinto, Joaquim G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hundhausen, Marie</au><au>Feldmann, Hendrik</au><au>Kohlhepp, Regina</au><au>Pinto, Joaquim G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble</atitle><jtitle>International journal of climatology</jtitle><date>2024-04</date><risdate>2024</risdate><volume>44</volume><issue>5</issue><spage>1454</spage><epage>1471</epage><pages>1454-1471</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>The increase in extreme precipitation with global warming (GW) and associated uncertainties are major challenges for climate adaptation. To project future extreme precipitation on different time and intensity scales (return periods [RPs] from 1 to 100 a and durations from 1 h to 3 days), we use a novel convection‐permitting (CP), multi‐global climate model ensemble of COSMO‐CLM regional simulations with a transient projection time (1971–2100) over Germany. We find an added value of the CP scale (2.8 km) with respect to the representation of hourly extreme precipitation intensities compared to the coarser scale with parametrized deep convection (7 km). In general, the return levels (RLs) calculated from the CP simulations are in better agreement with those of the conventional observation‐based risk products for the region for short event durations than for longer durations, where an overestimation by the simulation‐based results was found. A maximum climate change signal of 6–8.5% increase per degree of GW is projected within the CP ensemble, with the largest changes expected for short durations and long RPs. Analysis of the uncertainty in the climate change signal shows a substantial residual standard deviation of a linear approximation, highlighting the need for transient data sets instead of time‐slice experiments to increase confidence in the estimates. Furthermore, the ensemble spread is found to be smallest for intensities of short duration, where changes are expected to be based mainly on thermodynamic contributions. The ensemble spread is larger for long, multi‐day durations, where a stronger dependence on the dynamical component is ascribed. In addition, an increase in spatial variance of the RLs with GW implies a more variable future climate and points to an increasing importance of accounting for uncertainties.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/joc.8393</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5400-3088</orcidid><orcidid>https://orcid.org/0000-0001-6987-7351</orcidid><orcidid>https://orcid.org/0000-0002-8865-1769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-8418
ispartof International journal of climatology, 2024-04, Vol.44 (5), p.1454-1471
issn 0899-8418
1097-0088
language eng
recordid cdi_proquest_journals_3037294002
source Wiley Online Library Journals Frontfile Complete
subjects Approximation
Climate adaptation
Climate change
Climate change adaptation
Climate models
Convection
Extreme weather
Future climates
Global climate
Global climate models
Global warming
Mathematical analysis
Precipitation
Precipitation intensity
Rainfall intensity
Simulation
Uncertainty
title Climate change signals of extreme precipitation return levels for Germany in a transient convection‐permitting simulation ensemble
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20change%20signals%20of%20extreme%20precipitation%20return%20levels%20for%20Germany%20in%20a%20transient%20convection%E2%80%90permitting%20simulation%20ensemble&rft.jtitle=International%20journal%20of%20climatology&rft.au=Hundhausen,%20Marie&rft.date=2024-04&rft.volume=44&rft.issue=5&rft.spage=1454&rft.epage=1471&rft.pages=1454-1471&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.8393&rft_dat=%3Cproquest_cross%3E3037294002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037294002&rft_id=info:pmid/&rfr_iscdi=true