Selection of Natural Gas Dehydration Process for Offshore Floating Production Storage and Offloading

Based on the oil and gas component data of an offshore gas field in West Africa, the steady‐state models of the triethylene glycol (TEG) dehydration process and the low‐temperature separation dehydration process are established. The adaptability of two kinds of processes to the disturbance of pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2024-04, Vol.12 (4), p.n/a
Hauptverfasser: Zhu, Jian‐lu, Wang, Han, Cao, Hang, Zhang, Shu‐sen, Li, Yu‐xing, Ge, Xin‐can, Luo, Jia‐qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 12
creator Zhu, Jian‐lu
Wang, Han
Cao, Hang
Zhang, Shu‐sen
Li, Yu‐xing
Ge, Xin‐can
Luo, Jia‐qi
description Based on the oil and gas component data of an offshore gas field in West Africa, the steady‐state models of the triethylene glycol (TEG) dehydration process and the low‐temperature separation dehydration process are established. The adaptability of two kinds of processes to the disturbance of pressure, temperature, and flow of imported natural gas source is studied, and the sensitivity analysis is carried out. In addition, the investment cost and operating cost of the two types of processes are compared. The low temperature separation dehydration process is more adaptable to the disturbance of inlet gas source than the TEG dehydration process. The former is more expensive to build than the latter, but less expensive to run. The low temperature separation dehydration is preferred as the natural gas dehydration process which is more suitable for floating production storage and offloading. This article establishes steady‐state models for triethylene glycol (TEG) dehydration and low‐temperature separation dehydration processes, and compares the investment costs, operating costs, and maintenance costs of the two processes. The construction and maintenance costs of low‐temperature separation dehydration process are higher than those of TEG dehydration, but the operating cost is lower.
doi_str_mv 10.1002/ente.202300222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037266896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037266896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-be187dafb58d369de9be5a955d2273a295dedb5a01d03e205030405350597ea93</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxSMEEtPYlXMkzh1usrTNEY1tIKENaeMcpY27D5VmJK3Q_nvSFY0jJ9t6v2fLj5D7GMYxAHvEusExA8bDwNgVGbBYTqIJk8n1pc-yWzLy_gAAMQgugA-IWWOFRbO3NbUlXeqmdbqiC-3pM-5Oxumz9O5sgd7T0jq6Kku_sw7pvLJBrbedatp-x7qxTm-R6tp0YCBMIO7ITakrj6PfOiQf89lm-hK9rRav06e3qGApY1GOcZYaXeYiMzyRBmWOQkshDGMp10wKgyYXGmIDHBmEB2ByfkTIFLXkQ_LQ7z06-9Wib9TBtq4OJxUHnrIkyWQSqHFPFc5677BUR7f_1O6kYlBdmKoLU13CDAbZG773FZ7-odVsuZn9eX8ADTB4hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037266896</pqid></control><display><type>article</type><title>Selection of Natural Gas Dehydration Process for Offshore Floating Production Storage and Offloading</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Jian‐lu ; Wang, Han ; Cao, Hang ; Zhang, Shu‐sen ; Li, Yu‐xing ; Ge, Xin‐can ; Luo, Jia‐qi</creator><creatorcontrib>Zhu, Jian‐lu ; Wang, Han ; Cao, Hang ; Zhang, Shu‐sen ; Li, Yu‐xing ; Ge, Xin‐can ; Luo, Jia‐qi</creatorcontrib><description>Based on the oil and gas component data of an offshore gas field in West Africa, the steady‐state models of the triethylene glycol (TEG) dehydration process and the low‐temperature separation dehydration process are established. The adaptability of two kinds of processes to the disturbance of pressure, temperature, and flow of imported natural gas source is studied, and the sensitivity analysis is carried out. In addition, the investment cost and operating cost of the two types of processes are compared. The low temperature separation dehydration process is more adaptable to the disturbance of inlet gas source than the TEG dehydration process. The former is more expensive to build than the latter, but less expensive to run. The low temperature separation dehydration is preferred as the natural gas dehydration process which is more suitable for floating production storage and offloading. This article establishes steady‐state models for triethylene glycol (TEG) dehydration and low‐temperature separation dehydration processes, and compares the investment costs, operating costs, and maintenance costs of the two processes. The construction and maintenance costs of low‐temperature separation dehydration process are higher than those of TEG dehydration, but the operating cost is lower.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202300222</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adaptability ; Cost analysis ; cost comparison ; Dehydration ; FPSO ; Low temperature ; low temperature separation dehydration ; Natural gas ; Oil and gas fields ; Operating costs ; process selection ; Sensitivity analysis ; Separation ; Triethylene glycol ; triethylene glycol dehydration</subject><ispartof>Energy technology (Weinheim, Germany), 2024-04, Vol.12 (4), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2722-be187dafb58d369de9be5a955d2273a295dedb5a01d03e205030405350597ea93</cites><orcidid>0000-0002-5552-2119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202300222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202300222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhu, Jian‐lu</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Cao, Hang</creatorcontrib><creatorcontrib>Zhang, Shu‐sen</creatorcontrib><creatorcontrib>Li, Yu‐xing</creatorcontrib><creatorcontrib>Ge, Xin‐can</creatorcontrib><creatorcontrib>Luo, Jia‐qi</creatorcontrib><title>Selection of Natural Gas Dehydration Process for Offshore Floating Production Storage and Offloading</title><title>Energy technology (Weinheim, Germany)</title><description>Based on the oil and gas component data of an offshore gas field in West Africa, the steady‐state models of the triethylene glycol (TEG) dehydration process and the low‐temperature separation dehydration process are established. The adaptability of two kinds of processes to the disturbance of pressure, temperature, and flow of imported natural gas source is studied, and the sensitivity analysis is carried out. In addition, the investment cost and operating cost of the two types of processes are compared. The low temperature separation dehydration process is more adaptable to the disturbance of inlet gas source than the TEG dehydration process. The former is more expensive to build than the latter, but less expensive to run. The low temperature separation dehydration is preferred as the natural gas dehydration process which is more suitable for floating production storage and offloading. This article establishes steady‐state models for triethylene glycol (TEG) dehydration and low‐temperature separation dehydration processes, and compares the investment costs, operating costs, and maintenance costs of the two processes. The construction and maintenance costs of low‐temperature separation dehydration process are higher than those of TEG dehydration, but the operating cost is lower.</description><subject>Adaptability</subject><subject>Cost analysis</subject><subject>cost comparison</subject><subject>Dehydration</subject><subject>FPSO</subject><subject>Low temperature</subject><subject>low temperature separation dehydration</subject><subject>Natural gas</subject><subject>Oil and gas fields</subject><subject>Operating costs</subject><subject>process selection</subject><subject>Sensitivity analysis</subject><subject>Separation</subject><subject>Triethylene glycol</subject><subject>triethylene glycol dehydration</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PwzAMxSMEEtPYlXMkzh1usrTNEY1tIKENaeMcpY27D5VmJK3Q_nvSFY0jJ9t6v2fLj5D7GMYxAHvEusExA8bDwNgVGbBYTqIJk8n1pc-yWzLy_gAAMQgugA-IWWOFRbO3NbUlXeqmdbqiC-3pM-5Oxumz9O5sgd7T0jq6Kku_sw7pvLJBrbedatp-x7qxTm-R6tp0YCBMIO7ITakrj6PfOiQf89lm-hK9rRav06e3qGApY1GOcZYaXeYiMzyRBmWOQkshDGMp10wKgyYXGmIDHBmEB2ByfkTIFLXkQ_LQ7z06-9Wib9TBtq4OJxUHnrIkyWQSqHFPFc5677BUR7f_1O6kYlBdmKoLU13CDAbZG773FZ7-odVsuZn9eX8ADTB4hQ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Zhu, Jian‐lu</creator><creator>Wang, Han</creator><creator>Cao, Hang</creator><creator>Zhang, Shu‐sen</creator><creator>Li, Yu‐xing</creator><creator>Ge, Xin‐can</creator><creator>Luo, Jia‐qi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5552-2119</orcidid></search><sort><creationdate>202404</creationdate><title>Selection of Natural Gas Dehydration Process for Offshore Floating Production Storage and Offloading</title><author>Zhu, Jian‐lu ; Wang, Han ; Cao, Hang ; Zhang, Shu‐sen ; Li, Yu‐xing ; Ge, Xin‐can ; Luo, Jia‐qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-be187dafb58d369de9be5a955d2273a295dedb5a01d03e205030405350597ea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Cost analysis</topic><topic>cost comparison</topic><topic>Dehydration</topic><topic>FPSO</topic><topic>Low temperature</topic><topic>low temperature separation dehydration</topic><topic>Natural gas</topic><topic>Oil and gas fields</topic><topic>Operating costs</topic><topic>process selection</topic><topic>Sensitivity analysis</topic><topic>Separation</topic><topic>Triethylene glycol</topic><topic>triethylene glycol dehydration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jian‐lu</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Cao, Hang</creatorcontrib><creatorcontrib>Zhang, Shu‐sen</creatorcontrib><creatorcontrib>Li, Yu‐xing</creatorcontrib><creatorcontrib>Ge, Xin‐can</creatorcontrib><creatorcontrib>Luo, Jia‐qi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jian‐lu</au><au>Wang, Han</au><au>Cao, Hang</au><au>Zhang, Shu‐sen</au><au>Li, Yu‐xing</au><au>Ge, Xin‐can</au><au>Luo, Jia‐qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Natural Gas Dehydration Process for Offshore Floating Production Storage and Offloading</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Based on the oil and gas component data of an offshore gas field in West Africa, the steady‐state models of the triethylene glycol (TEG) dehydration process and the low‐temperature separation dehydration process are established. The adaptability of two kinds of processes to the disturbance of pressure, temperature, and flow of imported natural gas source is studied, and the sensitivity analysis is carried out. In addition, the investment cost and operating cost of the two types of processes are compared. The low temperature separation dehydration process is more adaptable to the disturbance of inlet gas source than the TEG dehydration process. The former is more expensive to build than the latter, but less expensive to run. The low temperature separation dehydration is preferred as the natural gas dehydration process which is more suitable for floating production storage and offloading. This article establishes steady‐state models for triethylene glycol (TEG) dehydration and low‐temperature separation dehydration processes, and compares the investment costs, operating costs, and maintenance costs of the two processes. The construction and maintenance costs of low‐temperature separation dehydration process are higher than those of TEG dehydration, but the operating cost is lower.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202300222</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5552-2119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2024-04, Vol.12 (4), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_3037266896
source Wiley Online Library Journals Frontfile Complete
subjects Adaptability
Cost analysis
cost comparison
Dehydration
FPSO
Low temperature
low temperature separation dehydration
Natural gas
Oil and gas fields
Operating costs
process selection
Sensitivity analysis
Separation
Triethylene glycol
triethylene glycol dehydration
title Selection of Natural Gas Dehydration Process for Offshore Floating Production Storage and Offloading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Natural%20Gas%20Dehydration%20Process%20for%20Offshore%20Floating%20Production%20Storage%20and%20Offloading&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Zhu,%20Jian%E2%80%90lu&rft.date=2024-04&rft.volume=12&rft.issue=4&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202300222&rft_dat=%3Cproquest_cross%3E3037266896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037266896&rft_id=info:pmid/&rfr_iscdi=true