Measuring proximity to standard planes during fetal brain ultrasound scanning

This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Chiara Di Vece, Cirigliano, Antonio, Meala Le Lous, Napolitano, Raffaele, David, Anna L, Peebles, Donald, Jannin, Pierre, Vasconcelos, Francisco, Stoyanov, Danail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chiara Di Vece
Cirigliano, Antonio
Meala Le Lous
Napolitano, Raffaele
David, Anna L
Peebles, Donald
Jannin, Pierre
Vasconcelos, Francisco
Stoyanov, Danail
description This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037194881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037194881</sourcerecordid><originalsourceid>FETCH-proquest_journals_30371948813</originalsourceid><addsrcrecordid>eNqNjLEKwjAUAIMgWLT_EHAupElr6yyKSzf38jSppMSXmpeA_r0F_QCnG-64BcukUmXRVlKuWE40CiHkrpF1rTLWdQYoBYt3PgX_sg8b3zx6ThFQQ9B8coCGuP42g4ng-DWARZ5cDEA-oeZ0A8TZb9hyAEcm_3HNtqfj5XAu5vczGYr96FPAWfVKqKbcV21bqv-qDxqUPuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037194881</pqid></control><display><type>article</type><title>Measuring proximity to standard planes during fetal brain ultrasound scanning</title><source>Free E- Journals</source><creator>Chiara Di Vece ; Cirigliano, Antonio ; Meala Le Lous ; Napolitano, Raffaele ; David, Anna L ; Peebles, Donald ; Jannin, Pierre ; Vasconcelos, Francisco ; Stoyanov, Danail</creator><creatorcontrib>Chiara Di Vece ; Cirigliano, Antonio ; Meala Le Lous ; Napolitano, Raffaele ; David, Anna L ; Peebles, Donald ; Jannin, Pierre ; Vasconcelos, Francisco ; Stoyanov, Danail</creatorcontrib><description>This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; Navigation ; Pipeline design ; Planes ; Pose estimation ; Proximity ; Two dimensional analysis ; Ultrasonic imaging</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chiara Di Vece</creatorcontrib><creatorcontrib>Cirigliano, Antonio</creatorcontrib><creatorcontrib>Meala Le Lous</creatorcontrib><creatorcontrib>Napolitano, Raffaele</creatorcontrib><creatorcontrib>David, Anna L</creatorcontrib><creatorcontrib>Peebles, Donald</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Vasconcelos, Francisco</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><title>Measuring proximity to standard planes during fetal brain ultrasound scanning</title><title>arXiv.org</title><description>This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.</description><subject>Brain</subject><subject>Navigation</subject><subject>Pipeline design</subject><subject>Planes</subject><subject>Pose estimation</subject><subject>Proximity</subject><subject>Two dimensional analysis</subject><subject>Ultrasonic imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLEKwjAUAIMgWLT_EHAupElr6yyKSzf38jSppMSXmpeA_r0F_QCnG-64BcukUmXRVlKuWE40CiHkrpF1rTLWdQYoBYt3PgX_sg8b3zx6ThFQQ9B8coCGuP42g4ng-DWARZ5cDEA-oeZ0A8TZb9hyAEcm_3HNtqfj5XAu5vczGYr96FPAWfVKqKbcV21bqv-qDxqUPuQ</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Chiara Di Vece</creator><creator>Cirigliano, Antonio</creator><creator>Meala Le Lous</creator><creator>Napolitano, Raffaele</creator><creator>David, Anna L</creator><creator>Peebles, Donald</creator><creator>Jannin, Pierre</creator><creator>Vasconcelos, Francisco</creator><creator>Stoyanov, Danail</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240410</creationdate><title>Measuring proximity to standard planes during fetal brain ultrasound scanning</title><author>Chiara Di Vece ; Cirigliano, Antonio ; Meala Le Lous ; Napolitano, Raffaele ; David, Anna L ; Peebles, Donald ; Jannin, Pierre ; Vasconcelos, Francisco ; Stoyanov, Danail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30371948813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Navigation</topic><topic>Pipeline design</topic><topic>Planes</topic><topic>Pose estimation</topic><topic>Proximity</topic><topic>Two dimensional analysis</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Chiara Di Vece</creatorcontrib><creatorcontrib>Cirigliano, Antonio</creatorcontrib><creatorcontrib>Meala Le Lous</creatorcontrib><creatorcontrib>Napolitano, Raffaele</creatorcontrib><creatorcontrib>David, Anna L</creatorcontrib><creatorcontrib>Peebles, Donald</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Vasconcelos, Francisco</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiara Di Vece</au><au>Cirigliano, Antonio</au><au>Meala Le Lous</au><au>Napolitano, Raffaele</au><au>David, Anna L</au><au>Peebles, Donald</au><au>Jannin, Pierre</au><au>Vasconcelos, Francisco</au><au>Stoyanov, Danail</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measuring proximity to standard planes during fetal brain ultrasound scanning</atitle><jtitle>arXiv.org</jtitle><date>2024-04-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3037194881
source Free E- Journals
subjects Brain
Navigation
Pipeline design
Planes
Pose estimation
Proximity
Two dimensional analysis
Ultrasonic imaging
title Measuring proximity to standard planes during fetal brain ultrasound scanning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measuring%20proximity%20to%20standard%20planes%20during%20fetal%20brain%20ultrasound%20scanning&rft.jtitle=arXiv.org&rft.au=Chiara%20Di%20Vece&rft.date=2024-04-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037194881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037194881&rft_id=info:pmid/&rfr_iscdi=true