Measuring proximity to standard planes during fetal brain ultrasound scanning
This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chiara Di Vece Cirigliano, Antonio Meala Le Lous Napolitano, Raffaele David, Anna L Peebles, Donald Jannin, Pierre Vasconcelos, Francisco Stoyanov, Danail |
description | This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037194881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037194881</sourcerecordid><originalsourceid>FETCH-proquest_journals_30371948813</originalsourceid><addsrcrecordid>eNqNjLEKwjAUAIMgWLT_EHAupElr6yyKSzf38jSppMSXmpeA_r0F_QCnG-64BcukUmXRVlKuWE40CiHkrpF1rTLWdQYoBYt3PgX_sg8b3zx6ThFQQ9B8coCGuP42g4ng-DWARZ5cDEA-oeZ0A8TZb9hyAEcm_3HNtqfj5XAu5vczGYr96FPAWfVKqKbcV21bqv-qDxqUPuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037194881</pqid></control><display><type>article</type><title>Measuring proximity to standard planes during fetal brain ultrasound scanning</title><source>Free E- Journals</source><creator>Chiara Di Vece ; Cirigliano, Antonio ; Meala Le Lous ; Napolitano, Raffaele ; David, Anna L ; Peebles, Donald ; Jannin, Pierre ; Vasconcelos, Francisco ; Stoyanov, Danail</creator><creatorcontrib>Chiara Di Vece ; Cirigliano, Antonio ; Meala Le Lous ; Napolitano, Raffaele ; David, Anna L ; Peebles, Donald ; Jannin, Pierre ; Vasconcelos, Francisco ; Stoyanov, Danail</creatorcontrib><description>This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; Navigation ; Pipeline design ; Planes ; Pose estimation ; Proximity ; Two dimensional analysis ; Ultrasonic imaging</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chiara Di Vece</creatorcontrib><creatorcontrib>Cirigliano, Antonio</creatorcontrib><creatorcontrib>Meala Le Lous</creatorcontrib><creatorcontrib>Napolitano, Raffaele</creatorcontrib><creatorcontrib>David, Anna L</creatorcontrib><creatorcontrib>Peebles, Donald</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Vasconcelos, Francisco</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><title>Measuring proximity to standard planes during fetal brain ultrasound scanning</title><title>arXiv.org</title><description>This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.</description><subject>Brain</subject><subject>Navigation</subject><subject>Pipeline design</subject><subject>Planes</subject><subject>Pose estimation</subject><subject>Proximity</subject><subject>Two dimensional analysis</subject><subject>Ultrasonic imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLEKwjAUAIMgWLT_EHAupElr6yyKSzf38jSppMSXmpeA_r0F_QCnG-64BcukUmXRVlKuWE40CiHkrpF1rTLWdQYoBYt3PgX_sg8b3zx6ThFQQ9B8coCGuP42g4ng-DWARZ5cDEA-oeZ0A8TZb9hyAEcm_3HNtqfj5XAu5vczGYr96FPAWfVKqKbcV21bqv-qDxqUPuQ</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Chiara Di Vece</creator><creator>Cirigliano, Antonio</creator><creator>Meala Le Lous</creator><creator>Napolitano, Raffaele</creator><creator>David, Anna L</creator><creator>Peebles, Donald</creator><creator>Jannin, Pierre</creator><creator>Vasconcelos, Francisco</creator><creator>Stoyanov, Danail</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240410</creationdate><title>Measuring proximity to standard planes during fetal brain ultrasound scanning</title><author>Chiara Di Vece ; Cirigliano, Antonio ; Meala Le Lous ; Napolitano, Raffaele ; David, Anna L ; Peebles, Donald ; Jannin, Pierre ; Vasconcelos, Francisco ; Stoyanov, Danail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30371948813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Navigation</topic><topic>Pipeline design</topic><topic>Planes</topic><topic>Pose estimation</topic><topic>Proximity</topic><topic>Two dimensional analysis</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Chiara Di Vece</creatorcontrib><creatorcontrib>Cirigliano, Antonio</creatorcontrib><creatorcontrib>Meala Le Lous</creatorcontrib><creatorcontrib>Napolitano, Raffaele</creatorcontrib><creatorcontrib>David, Anna L</creatorcontrib><creatorcontrib>Peebles, Donald</creatorcontrib><creatorcontrib>Jannin, Pierre</creatorcontrib><creatorcontrib>Vasconcelos, Francisco</creatorcontrib><creatorcontrib>Stoyanov, Danail</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiara Di Vece</au><au>Cirigliano, Antonio</au><au>Meala Le Lous</au><au>Napolitano, Raffaele</au><au>David, Anna L</au><au>Peebles, Donald</au><au>Jannin, Pierre</au><au>Vasconcelos, Francisco</au><au>Stoyanov, Danail</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measuring proximity to standard planes during fetal brain ultrasound scanning</atitle><jtitle>arXiv.org</jtitle><date>2024-04-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces a novel pipeline designed to bring ultrasound (US) plane pose estimation closer to clinical use for more effective navigation to the standard planes (SPs) in the fetal brain. We propose a semi-supervised segmentation model utilizing both labeled SPs and unlabeled 3D US volume slices. Our model enables reliable segmentation across a diverse set of fetal brain images. Furthermore, the model incorporates a classification mechanism to identify the fetal brain precisely. Our model not only filters out frames lacking the brain but also generates masks for those containing it, enhancing the relevance of plane pose regression in clinical settings. We focus on fetal brain navigation from 2D ultrasound (US) video analysis and combine this model with a US plane pose regression network to provide sensorless proximity detection to SPs and non-SPs planes; we emphasize the importance of proximity detection to SPs for guiding sonographers, offering a substantial advantage over traditional methods by allowing earlier and more precise adjustments during scanning. We demonstrate the practical applicability of our approach through validation on real fetal scan videos obtained from sonographers of varying expertise levels. Our findings demonstrate the potential of our approach to complement existing fetal US technologies and advance prenatal diagnostic practices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3037194881 |
source | Free E- Journals |
subjects | Brain Navigation Pipeline design Planes Pose estimation Proximity Two dimensional analysis Ultrasonic imaging |
title | Measuring proximity to standard planes during fetal brain ultrasound scanning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measuring%20proximity%20to%20standard%20planes%20during%20fetal%20brain%20ultrasound%20scanning&rft.jtitle=arXiv.org&rft.au=Chiara%20Di%20Vece&rft.date=2024-04-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037194881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037194881&rft_id=info:pmid/&rfr_iscdi=true |