An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials
The focus of this investigation centers on the formulation of a novel spectral method deployed to numerically solve partial integro-differential equations that possess memory features. The approach leverages the hexic shifted Chebyshev polynomials, and addresses the nonlinearity of the computational...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2024-06, Vol.43 (4), Article 172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 43 |
creator | Babaei, A. Banihashemi, S. Parsa Moghaddam, B. Dabiri, A. |
description | The focus of this investigation centers on the formulation of a novel spectral method deployed to numerically solve partial integro-differential equations that possess memory features. The approach leverages the hexic shifted Chebyshev polynomials, and addresses the nonlinearity of the computational output using iterative methods. A comprehensive explanation of the methodology is presented, and a thorough convergence analysis is conducted. This technique has the capacity to be effortlessly modified and used to solve a plethora of linear and nonlinear issues, while minimizing computational time. Ultimately, the effectiveness of this novel strategy is demonstrated through the successful resolution of two exemplary problems. The findings of this study suggest that this spectral approach holds significant promise for solving partial integro-differential equations. |
doi_str_mv | 10.1007/s40314-024-02703-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3035719548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035719548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d8c1bf2f76f9f6be6b3ba77b4b189d315c4dab0b0eed4575dbffb79426899c533</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhEVpoWnaF-hJ0LNbyZIt6xhC_yDQS3sWkr2KFRzLkZyQvECfu0pS6K2HZWB3voEdhO4peaSEiKfICaM8I_lxBGGZvEATWhGREUbySzTJc1ZlrCTsGt3EuCKECcr5BH3Peqy7pQ9ubNeuxrAfOh_06HyPvcU7HZw2HWAfGgjYBl0fT7rDgw6jS-r6EZbBZ42zFgL0pyVstqeIiHdO4xb2KTm2zo7Q4HkL5hBb2OHBd4ferxMQb9GVTQJ3vzpFXy_Pn_O3bPHx-j6fLbKaUTlmTVVTY3MrSittaaA0zGghDDe0kg2jRc0bbYghAA0vRNEYa42QPC8rKeuCsSl6OOcOwW-2EEe18tuQ_omKEVYIKgteJVd-dtXBxxjAqiG4tQ4HRYk69q3OfavUtzr1rWSC2BmKydwvIfxF_0P9AEA3h4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035719548</pqid></control><display><type>article</type><title>An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials</title><source>SpringerLink Journals</source><creator>Babaei, A. ; Banihashemi, S. ; Parsa Moghaddam, B. ; Dabiri, A.</creator><creatorcontrib>Babaei, A. ; Banihashemi, S. ; Parsa Moghaddam, B. ; Dabiri, A.</creatorcontrib><description>The focus of this investigation centers on the formulation of a novel spectral method deployed to numerically solve partial integro-differential equations that possess memory features. The approach leverages the hexic shifted Chebyshev polynomials, and addresses the nonlinearity of the computational output using iterative methods. A comprehensive explanation of the methodology is presented, and a thorough convergence analysis is conducted. This technique has the capacity to be effortlessly modified and used to solve a plethora of linear and nonlinear issues, while minimizing computational time. Ultimately, the effectiveness of this novel strategy is demonstrated through the successful resolution of two exemplary problems. The findings of this study suggest that this spectral approach holds significant promise for solving partial integro-differential equations.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-024-02703-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Chebyshev approximation ; Computational Mathematics and Numerical Analysis ; Computing time ; Differential equations ; Iterative methods ; Mathematical analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Polynomials ; Spectral methods</subject><ispartof>Computational & applied mathematics, 2024-06, Vol.43 (4), Article 172</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d8c1bf2f76f9f6be6b3ba77b4b189d315c4dab0b0eed4575dbffb79426899c533</citedby><cites>FETCH-LOGICAL-c319t-d8c1bf2f76f9f6be6b3ba77b4b189d315c4dab0b0eed4575dbffb79426899c533</cites><orcidid>0000-0002-6980-9786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-024-02703-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-024-02703-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Babaei, A.</creatorcontrib><creatorcontrib>Banihashemi, S.</creatorcontrib><creatorcontrib>Parsa Moghaddam, B.</creatorcontrib><creatorcontrib>Dabiri, A.</creatorcontrib><title>An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>The focus of this investigation centers on the formulation of a novel spectral method deployed to numerically solve partial integro-differential equations that possess memory features. The approach leverages the hexic shifted Chebyshev polynomials, and addresses the nonlinearity of the computational output using iterative methods. A comprehensive explanation of the methodology is presented, and a thorough convergence analysis is conducted. This technique has the capacity to be effortlessly modified and used to solve a plethora of linear and nonlinear issues, while minimizing computational time. Ultimately, the effectiveness of this novel strategy is demonstrated through the successful resolution of two exemplary problems. The findings of this study suggest that this spectral approach holds significant promise for solving partial integro-differential equations.</description><subject>Applications of Mathematics</subject><subject>Chebyshev approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computing time</subject><subject>Differential equations</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Spectral methods</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhEVpoWnaF-hJ0LNbyZIt6xhC_yDQS3sWkr2KFRzLkZyQvECfu0pS6K2HZWB3voEdhO4peaSEiKfICaM8I_lxBGGZvEATWhGREUbySzTJc1ZlrCTsGt3EuCKECcr5BH3Peqy7pQ9ubNeuxrAfOh_06HyPvcU7HZw2HWAfGgjYBl0fT7rDgw6jS-r6EZbBZ42zFgL0pyVstqeIiHdO4xb2KTm2zo7Q4HkL5hBb2OHBd4ferxMQb9GVTQJ3vzpFXy_Pn_O3bPHx-j6fLbKaUTlmTVVTY3MrSittaaA0zGghDDe0kg2jRc0bbYghAA0vRNEYa42QPC8rKeuCsSl6OOcOwW-2EEe18tuQ_omKEVYIKgteJVd-dtXBxxjAqiG4tQ4HRYk69q3OfavUtzr1rWSC2BmKydwvIfxF_0P9AEA3h4U</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Babaei, A.</creator><creator>Banihashemi, S.</creator><creator>Parsa Moghaddam, B.</creator><creator>Dabiri, A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6980-9786</orcidid></search><sort><creationdate>20240601</creationdate><title>An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials</title><author>Babaei, A. ; Banihashemi, S. ; Parsa Moghaddam, B. ; Dabiri, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d8c1bf2f76f9f6be6b3ba77b4b189d315c4dab0b0eed4575dbffb79426899c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Chebyshev approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computing time</topic><topic>Differential equations</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Spectral methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babaei, A.</creatorcontrib><creatorcontrib>Banihashemi, S.</creatorcontrib><creatorcontrib>Parsa Moghaddam, B.</creatorcontrib><creatorcontrib>Dabiri, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babaei, A.</au><au>Banihashemi, S.</au><au>Parsa Moghaddam, B.</au><au>Dabiri, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><artnum>172</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>The focus of this investigation centers on the formulation of a novel spectral method deployed to numerically solve partial integro-differential equations that possess memory features. The approach leverages the hexic shifted Chebyshev polynomials, and addresses the nonlinearity of the computational output using iterative methods. A comprehensive explanation of the methodology is presented, and a thorough convergence analysis is conducted. This technique has the capacity to be effortlessly modified and used to solve a plethora of linear and nonlinear issues, while minimizing computational time. Ultimately, the effectiveness of this novel strategy is demonstrated through the successful resolution of two exemplary problems. The findings of this study suggest that this spectral approach holds significant promise for solving partial integro-differential equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-024-02703-9</doi><orcidid>https://orcid.org/0000-0002-6980-9786</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2024-06, Vol.43 (4), Article 172 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_3035719548 |
source | SpringerLink Journals |
subjects | Applications of Mathematics Chebyshev approximation Computational Mathematics and Numerical Analysis Computing time Differential equations Iterative methods Mathematical analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Nonlinearity Polynomials Spectral methods |
title | An algorithmic exploration of variable order fractional partial integro-differential equations via hexic shifted Chebyshev polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithmic%20exploration%20of%20variable%20order%20fractional%20partial%20integro-differential%20equations%20via%20hexic%20shifted%20Chebyshev%20polynomials&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Babaei,%20A.&rft.date=2024-06-01&rft.volume=43&rft.issue=4&rft.artnum=172&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-024-02703-9&rft_dat=%3Cproquest_cross%3E3035719548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035719548&rft_id=info:pmid/&rfr_iscdi=true |