Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method
The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study fou...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3024 |
creator | Rosadi, Dedi Arisanty, Deasy Andriyani, Widyastuti |
description | The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%. |
doi_str_mv | 10.1063/5.0204719 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3035288433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035288433</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-37cb52721e92b5c4ce4d424843fd20af69093b621dcc7c0b3318028b3b120f703</originalsourceid><addsrcrecordid>eNotkM1Lw0AQxRdRsFYP_gcL3oTU2Z1NNjmW1i8oKqigp7BfsVvaTdxNDv3vTbGnmWEe7_F-hFwzmDEo8C6fAQchWXVCJizPWSYLVpySCUAlMi7w65xcpLQB4JWU5YTEt-isN71vA20b2rTRpZ42PjraGjPE6IJxifpAO6f6rQo20YwOQatxN86Ox1L1ig7Jhx-63uvoLZ0v5-_fL9lOmbUPjm6diuHw3rl-3dpLctaobXJXxzklnw_3H4unbPX6-LyYr7KOIfYZSqNzLjlzFde5EcYJK7goBTaWg2qKCirUBWfWGGlAI7ISeKlRMw6NBJySm3_fLra_w1ir3rRDDGNkjYA5L0crHFW3_6pkfK8OHOou-p2K-5pBfWBa5_WRKf4BiItn9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3035288433</pqid></control><display><type>conference_proceeding</type><title>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</title><source>AIP Journals Complete</source><creator>Rosadi, Dedi ; Arisanty, Deasy ; Andriyani, Widyastuti</creator><contributor>Yerizon ; Wen, Goh Khang ; Rifandi, Ronal ; Tasman, Fridgo ; Rodrigues, Paulo Canas ; Rusyda, Nurul Afifah ; Sari, Devni Prima</contributor><creatorcontrib>Rosadi, Dedi ; Arisanty, Deasy ; Andriyani, Widyastuti ; Yerizon ; Wen, Goh Khang ; Rifandi, Ronal ; Tasman, Fridgo ; Rodrigues, Paulo Canas ; Rusyda, Nurul Afifah ; Sari, Devni Prima</creatorcontrib><description>The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0204719</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive sampling ; Classification ; Datasets ; Forest fires ; Literature reviews ; Machine learning ; Peatlands</subject><ispartof>AIP conference proceedings, 2024, Vol.3024 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0204719$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Yerizon</contributor><contributor>Wen, Goh Khang</contributor><contributor>Rifandi, Ronal</contributor><contributor>Tasman, Fridgo</contributor><contributor>Rodrigues, Paulo Canas</contributor><contributor>Rusyda, Nurul Afifah</contributor><contributor>Sari, Devni Prima</contributor><creatorcontrib>Rosadi, Dedi</creatorcontrib><creatorcontrib>Arisanty, Deasy</creatorcontrib><creatorcontrib>Andriyani, Widyastuti</creatorcontrib><title>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</title><title>AIP conference proceedings</title><description>The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.</description><subject>Adaptive sampling</subject><subject>Classification</subject><subject>Datasets</subject><subject>Forest fires</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Peatlands</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1Lw0AQxRdRsFYP_gcL3oTU2Z1NNjmW1i8oKqigp7BfsVvaTdxNDv3vTbGnmWEe7_F-hFwzmDEo8C6fAQchWXVCJizPWSYLVpySCUAlMi7w65xcpLQB4JWU5YTEt-isN71vA20b2rTRpZ42PjraGjPE6IJxifpAO6f6rQo20YwOQatxN86Ox1L1ig7Jhx-63uvoLZ0v5-_fL9lOmbUPjm6diuHw3rl-3dpLctaobXJXxzklnw_3H4unbPX6-LyYr7KOIfYZSqNzLjlzFde5EcYJK7goBTaWg2qKCirUBWfWGGlAI7ISeKlRMw6NBJySm3_fLra_w1ir3rRDDGNkjYA5L0crHFW3_6pkfK8OHOou-p2K-5pBfWBa5_WRKf4BiItn9g</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Rosadi, Dedi</creator><creator>Arisanty, Deasy</creator><creator>Andriyani, Widyastuti</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240410</creationdate><title>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</title><author>Rosadi, Dedi ; Arisanty, Deasy ; Andriyani, Widyastuti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-37cb52721e92b5c4ce4d424843fd20af69093b621dcc7c0b3318028b3b120f703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Classification</topic><topic>Datasets</topic><topic>Forest fires</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Peatlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosadi, Dedi</creatorcontrib><creatorcontrib>Arisanty, Deasy</creatorcontrib><creatorcontrib>Andriyani, Widyastuti</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosadi, Dedi</au><au>Arisanty, Deasy</au><au>Andriyani, Widyastuti</au><au>Yerizon</au><au>Wen, Goh Khang</au><au>Rifandi, Ronal</au><au>Tasman, Fridgo</au><au>Rodrigues, Paulo Canas</au><au>Rusyda, Nurul Afifah</au><au>Sari, Devni Prima</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</atitle><btitle>AIP conference proceedings</btitle><date>2024-04-10</date><risdate>2024</risdate><volume>3024</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0204719</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3024 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3035288433 |
source | AIP Journals Complete |
subjects | Adaptive sampling Classification Datasets Forest fires Literature reviews Machine learning Peatlands |
title | Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20forest%20fire%20occurrences%20in%20peatlands%20-%20unbalanced%20-%20Data%20using%20hybrid%20ADASYN-machine%20learning%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Rosadi,%20Dedi&rft.date=2024-04-10&rft.volume=3024&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0204719&rft_dat=%3Cproquest_scita%3E3035288433%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035288433&rft_id=info:pmid/&rfr_iscdi=true |