Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method

The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rosadi, Dedi, Arisanty, Deasy, Andriyani, Widyastuti
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3024
creator Rosadi, Dedi
Arisanty, Deasy
Andriyani, Widyastuti
description The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.
doi_str_mv 10.1063/5.0204719
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3035288433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035288433</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-37cb52721e92b5c4ce4d424843fd20af69093b621dcc7c0b3318028b3b120f703</originalsourceid><addsrcrecordid>eNotkM1Lw0AQxRdRsFYP_gcL3oTU2Z1NNjmW1i8oKqigp7BfsVvaTdxNDv3vTbGnmWEe7_F-hFwzmDEo8C6fAQchWXVCJizPWSYLVpySCUAlMi7w65xcpLQB4JWU5YTEt-isN71vA20b2rTRpZ42PjraGjPE6IJxifpAO6f6rQo20YwOQatxN86Ox1L1ig7Jhx-63uvoLZ0v5-_fL9lOmbUPjm6diuHw3rl-3dpLctaobXJXxzklnw_3H4unbPX6-LyYr7KOIfYZSqNzLjlzFde5EcYJK7goBTaWg2qKCirUBWfWGGlAI7ISeKlRMw6NBJySm3_fLra_w1ir3rRDDGNkjYA5L0crHFW3_6pkfK8OHOou-p2K-5pBfWBa5_WRKf4BiItn9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3035288433</pqid></control><display><type>conference_proceeding</type><title>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</title><source>AIP Journals Complete</source><creator>Rosadi, Dedi ; Arisanty, Deasy ; Andriyani, Widyastuti</creator><contributor>Yerizon ; Wen, Goh Khang ; Rifandi, Ronal ; Tasman, Fridgo ; Rodrigues, Paulo Canas ; Rusyda, Nurul Afifah ; Sari, Devni Prima</contributor><creatorcontrib>Rosadi, Dedi ; Arisanty, Deasy ; Andriyani, Widyastuti ; Yerizon ; Wen, Goh Khang ; Rifandi, Ronal ; Tasman, Fridgo ; Rodrigues, Paulo Canas ; Rusyda, Nurul Afifah ; Sari, Devni Prima</creatorcontrib><description>The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0204719</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive sampling ; Classification ; Datasets ; Forest fires ; Literature reviews ; Machine learning ; Peatlands</subject><ispartof>AIP conference proceedings, 2024, Vol.3024 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0204719$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Yerizon</contributor><contributor>Wen, Goh Khang</contributor><contributor>Rifandi, Ronal</contributor><contributor>Tasman, Fridgo</contributor><contributor>Rodrigues, Paulo Canas</contributor><contributor>Rusyda, Nurul Afifah</contributor><contributor>Sari, Devni Prima</contributor><creatorcontrib>Rosadi, Dedi</creatorcontrib><creatorcontrib>Arisanty, Deasy</creatorcontrib><creatorcontrib>Andriyani, Widyastuti</creatorcontrib><title>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</title><title>AIP conference proceedings</title><description>The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.</description><subject>Adaptive sampling</subject><subject>Classification</subject><subject>Datasets</subject><subject>Forest fires</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Peatlands</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1Lw0AQxRdRsFYP_gcL3oTU2Z1NNjmW1i8oKqigp7BfsVvaTdxNDv3vTbGnmWEe7_F-hFwzmDEo8C6fAQchWXVCJizPWSYLVpySCUAlMi7w65xcpLQB4JWU5YTEt-isN71vA20b2rTRpZ42PjraGjPE6IJxifpAO6f6rQo20YwOQatxN86Ox1L1ig7Jhx-63uvoLZ0v5-_fL9lOmbUPjm6diuHw3rl-3dpLctaobXJXxzklnw_3H4unbPX6-LyYr7KOIfYZSqNzLjlzFde5EcYJK7goBTaWg2qKCirUBWfWGGlAI7ISeKlRMw6NBJySm3_fLra_w1ir3rRDDGNkjYA5L0crHFW3_6pkfK8OHOou-p2K-5pBfWBa5_WRKf4BiItn9g</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Rosadi, Dedi</creator><creator>Arisanty, Deasy</creator><creator>Andriyani, Widyastuti</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240410</creationdate><title>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</title><author>Rosadi, Dedi ; Arisanty, Deasy ; Andriyani, Widyastuti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-37cb52721e92b5c4ce4d424843fd20af69093b621dcc7c0b3318028b3b120f703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Classification</topic><topic>Datasets</topic><topic>Forest fires</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Peatlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosadi, Dedi</creatorcontrib><creatorcontrib>Arisanty, Deasy</creatorcontrib><creatorcontrib>Andriyani, Widyastuti</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosadi, Dedi</au><au>Arisanty, Deasy</au><au>Andriyani, Widyastuti</au><au>Yerizon</au><au>Wen, Goh Khang</au><au>Rifandi, Ronal</au><au>Tasman, Fridgo</au><au>Rodrigues, Paulo Canas</au><au>Rusyda, Nurul Afifah</au><au>Sari, Devni Prima</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method</atitle><btitle>AIP conference proceedings</btitle><date>2024-04-10</date><risdate>2024</risdate><volume>3024</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The literature review found that only a few studies in Indonesia have been applied to modeling peatlands fire occurrences. In our previous studies, various machine learning classification approaches are applied to predict forest fire occurrence in the peatlands area. Our previous empirical study found that the datasets of fire hotspot areas, especially for data from the South Kalimantan area, need to be more balanced. In this paper, we consider ADAptive SYNthetic (ADASYN) method for the sampling approach to balance the datasets. We found that by balancing the data, the performance of the classification method can improve about 2-4%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0204719</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3024 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3035288433
source AIP Journals Complete
subjects Adaptive sampling
Classification
Datasets
Forest fires
Literature reviews
Machine learning
Peatlands
title Prediction of forest fire occurrences in peatlands - unbalanced - Data using hybrid ADASYN-machine learning method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20forest%20fire%20occurrences%20in%20peatlands%20-%20unbalanced%20-%20Data%20using%20hybrid%20ADASYN-machine%20learning%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Rosadi,%20Dedi&rft.date=2024-04-10&rft.volume=3024&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0204719&rft_dat=%3Cproquest_scita%3E3035288433%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035288433&rft_id=info:pmid/&rfr_iscdi=true