Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet
Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. T...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024-01, Vol.21, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Zhu, Li Li, Hui Ma, Li Li, Jianjun Wu, Baohai Gao, Jinghuai |
description | Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of > 0.8. |
doi_str_mv | 10.1109/LGRS.2024.3383212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3035282343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10487641</ieee_id><sourcerecordid>3035282343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-9214542231b75981550c115e91bc278ee2be284118a976000fe8c48873eb497f3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXETBWv0BgocFz6n72WyOodpaCCpqwduSrC9xS0zq7qbgv3dDe_DyPmBm3rxB6JqSGaUkuytWr28zRpiYca44o-wETaiUKiEypafjLGQiM_Vxji6835KIVCqdoGrdBWhb20AX8PozVltbUwbbd3hpnQ84d87uy9bjvsa56QcfrMFF3zS2a_BicHvweOPH5X4oW5yHMIpE-stX6eEJwiU6qyMfro59ijbLh_fFY1I8r9aLvEgME_OQZIwKKRjjtEqj0WieGEolZLQyLFUArAKmBKWqzNI5IaQGZcYnOFQiS2s-RbcH3Z3rfwbwQW_7wXXxpOaES6YYFzyi6AFlXO-9g1rvnP0u3a-mRI9R6jFKPUapj1FGzs2BYwHgH16odC4o_wMH5G8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035282343</pqid></control><display><type>article</type><title>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Li ; Li, Hui ; Ma, Li ; Li, Jianjun ; Wu, Baohai ; Gao, Jinghuai</creator><creatorcontrib>Zhu, Li ; Li, Hui ; Ma, Li ; Li, Jianjun ; Wu, Baohai ; Gao, Jinghuai</creatorcontrib><description>Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of > 0.8.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3383212</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic logging curves ; Acoustics ; Convolution ; Correlation ; Deep learning ; Dual attention phasenet ; Feature extraction ; First arrival extraction ; Logging ; Noise ; Shape</subject><ispartof>IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-9214542231b75981550c115e91bc278ee2be284118a976000fe8c48873eb497f3</cites><orcidid>0000-0002-9884-6164 ; 0000-0002-0448-8555 ; 0000-0002-3885-6125 ; 0000-0003-2575-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10487641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10487641$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wu, Baohai</creatorcontrib><creatorcontrib>Gao, Jinghuai</creatorcontrib><title>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of > 0.8.</description><subject>Acoustic logging curves</subject><subject>Acoustics</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Dual attention phasenet</subject><subject>Feature extraction</subject><subject>First arrival extraction</subject><subject>Logging</subject><subject>Noise</subject><subject>Shape</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Lw0AUXETBWv0BgocFz6n72WyOodpaCCpqwduSrC9xS0zq7qbgv3dDe_DyPmBm3rxB6JqSGaUkuytWr28zRpiYca44o-wETaiUKiEypafjLGQiM_Vxji6835KIVCqdoGrdBWhb20AX8PozVltbUwbbd3hpnQ84d87uy9bjvsa56QcfrMFF3zS2a_BicHvweOPH5X4oW5yHMIpE-stX6eEJwiU6qyMfro59ijbLh_fFY1I8r9aLvEgME_OQZIwKKRjjtEqj0WieGEolZLQyLFUArAKmBKWqzNI5IaQGZcYnOFQiS2s-RbcH3Z3rfwbwQW_7wXXxpOaES6YYFzyi6AFlXO-9g1rvnP0u3a-mRI9R6jFKPUapj1FGzs2BYwHgH16odC4o_wMH5G8H</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhu, Li</creator><creator>Li, Hui</creator><creator>Ma, Li</creator><creator>Li, Jianjun</creator><creator>Wu, Baohai</creator><creator>Gao, Jinghuai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9884-6164</orcidid><orcidid>https://orcid.org/0000-0002-0448-8555</orcidid><orcidid>https://orcid.org/0000-0002-3885-6125</orcidid><orcidid>https://orcid.org/0000-0003-2575-2906</orcidid></search><sort><creationdate>20240101</creationdate><title>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</title><author>Zhu, Li ; Li, Hui ; Ma, Li ; Li, Jianjun ; Wu, Baohai ; Gao, Jinghuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-9214542231b75981550c115e91bc278ee2be284118a976000fe8c48873eb497f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic logging curves</topic><topic>Acoustics</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Dual attention phasenet</topic><topic>Feature extraction</topic><topic>First arrival extraction</topic><topic>Logging</topic><topic>Noise</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wu, Baohai</creatorcontrib><creatorcontrib>Gao, Jinghuai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Li</au><au>Li, Hui</au><au>Ma, Li</au><au>Li, Jianjun</au><au>Wu, Baohai</au><au>Gao, Jinghuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of > 0.8.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3383212</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9884-6164</orcidid><orcidid>https://orcid.org/0000-0002-0448-8555</orcidid><orcidid>https://orcid.org/0000-0002-3885-6125</orcidid><orcidid>https://orcid.org/0000-0003-2575-2906</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_3035282343 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic logging curves Acoustics Convolution Correlation Deep learning Dual attention phasenet Feature extraction First arrival extraction Logging Noise Shape |
title | Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Identification%20First%20Arrivals%20of%20Acoustic%20Logging%20Curves%20Using%20Dual%20Attention%20PhaseNet&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhu,%20Li&rft.date=2024-01-01&rft.volume=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3383212&rft_dat=%3Cproquest_RIE%3E3035282343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035282343&rft_id=info:pmid/&rft_ieee_id=10487641&rfr_iscdi=true |