Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet

Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024-01, Vol.21, p.1-1
Hauptverfasser: Zhu, Li, Li, Hui, Ma, Li, Li, Jianjun, Wu, Baohai, Gao, Jinghuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Zhu, Li
Li, Hui
Ma, Li
Li, Jianjun
Wu, Baohai
Gao, Jinghuai
description Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of > 0.8.
doi_str_mv 10.1109/LGRS.2024.3383212
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3035282343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10487641</ieee_id><sourcerecordid>3035282343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-9214542231b75981550c115e91bc278ee2be284118a976000fe8c48873eb497f3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUXETBWv0BgocFz6n72WyOodpaCCpqwduSrC9xS0zq7qbgv3dDe_DyPmBm3rxB6JqSGaUkuytWr28zRpiYca44o-wETaiUKiEypafjLGQiM_Vxji6835KIVCqdoGrdBWhb20AX8PozVltbUwbbd3hpnQ84d87uy9bjvsa56QcfrMFF3zS2a_BicHvweOPH5X4oW5yHMIpE-stX6eEJwiU6qyMfro59ijbLh_fFY1I8r9aLvEgME_OQZIwKKRjjtEqj0WieGEolZLQyLFUArAKmBKWqzNI5IaQGZcYnOFQiS2s-RbcH3Z3rfwbwQW_7wXXxpOaES6YYFzyi6AFlXO-9g1rvnP0u3a-mRI9R6jFKPUapj1FGzs2BYwHgH16odC4o_wMH5G8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035282343</pqid></control><display><type>article</type><title>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Li ; Li, Hui ; Ma, Li ; Li, Jianjun ; Wu, Baohai ; Gao, Jinghuai</creator><creatorcontrib>Zhu, Li ; Li, Hui ; Ma, Li ; Li, Jianjun ; Wu, Baohai ; Gao, Jinghuai</creatorcontrib><description>Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of &gt; 0.8.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3383212</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic logging curves ; Acoustics ; Convolution ; Correlation ; Deep learning ; Dual attention phasenet ; Feature extraction ; First arrival extraction ; Logging ; Noise ; Shape</subject><ispartof>IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-9214542231b75981550c115e91bc278ee2be284118a976000fe8c48873eb497f3</cites><orcidid>0000-0002-9884-6164 ; 0000-0002-0448-8555 ; 0000-0002-3885-6125 ; 0000-0003-2575-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10487641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10487641$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wu, Baohai</creatorcontrib><creatorcontrib>Gao, Jinghuai</creatorcontrib><title>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of &gt; 0.8.</description><subject>Acoustic logging curves</subject><subject>Acoustics</subject><subject>Convolution</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Dual attention phasenet</subject><subject>Feature extraction</subject><subject>First arrival extraction</subject><subject>Logging</subject><subject>Noise</subject><subject>Shape</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1Lw0AUXETBWv0BgocFz6n72WyOodpaCCpqwduSrC9xS0zq7qbgv3dDe_DyPmBm3rxB6JqSGaUkuytWr28zRpiYca44o-wETaiUKiEypafjLGQiM_Vxji6835KIVCqdoGrdBWhb20AX8PozVltbUwbbd3hpnQ84d87uy9bjvsa56QcfrMFF3zS2a_BicHvweOPH5X4oW5yHMIpE-stX6eEJwiU6qyMfro59ijbLh_fFY1I8r9aLvEgME_OQZIwKKRjjtEqj0WieGEolZLQyLFUArAKmBKWqzNI5IaQGZcYnOFQiS2s-RbcH3Z3rfwbwQW_7wXXxpOaES6YYFzyi6AFlXO-9g1rvnP0u3a-mRI9R6jFKPUapj1FGzs2BYwHgH16odC4o_wMH5G8H</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhu, Li</creator><creator>Li, Hui</creator><creator>Ma, Li</creator><creator>Li, Jianjun</creator><creator>Wu, Baohai</creator><creator>Gao, Jinghuai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9884-6164</orcidid><orcidid>https://orcid.org/0000-0002-0448-8555</orcidid><orcidid>https://orcid.org/0000-0002-3885-6125</orcidid><orcidid>https://orcid.org/0000-0003-2575-2906</orcidid></search><sort><creationdate>20240101</creationdate><title>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</title><author>Zhu, Li ; Li, Hui ; Ma, Li ; Li, Jianjun ; Wu, Baohai ; Gao, Jinghuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-9214542231b75981550c115e91bc278ee2be284118a976000fe8c48873eb497f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic logging curves</topic><topic>Acoustics</topic><topic>Convolution</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Dual attention phasenet</topic><topic>Feature extraction</topic><topic>First arrival extraction</topic><topic>Logging</topic><topic>Noise</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wu, Baohai</creatorcontrib><creatorcontrib>Gao, Jinghuai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Li</au><au>Li, Hui</au><au>Ma, Li</au><au>Li, Jianjun</au><au>Wu, Baohai</au><au>Gao, Jinghuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Accurately picking the first arrivals of acoustic logging curves (e.g., P-, S- and Stoneley waves) is crucial for stratigraphic lithology characterization. The conventional interpreter-dominated first arrivals identification methods frequently lead to an interpretation uncertainty and time burden. To reduce these deficiencies, we developed a dual attention PhaseNet (DA-PhaseNet) network to intelligently identify the first arrivals of acoustic logging curves. The field data test demonstrates that the DA-PhaseNet network can dramatically improve the result accuracy and its generality compared to other PhaseNet-based methods. Specifically, the DA-PhaseNet strategy can capture both local and global features of input logging curves simultaneously, resulting in a high identification accuracy of 99.4% and 94.5% for P- and S-wave respectively. Moreover, the proposed DA-PhaseNet network dramatically improves the accuracy of first arrival identification from 72.3% to 87.6% for the noise-contaminated Stoneley wave. Furthermore, it is important to mention that the DA-PhaseNet has a maximum noise tolerance of 0 dB for P- and Stoneley waves to ensure accuracy of first arrival identification, while has a maximum noise tolerance level of 10 dB for S-wave if the result F1 score limit is set at a level of &gt; 0.8.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3383212</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9884-6164</orcidid><orcidid>https://orcid.org/0000-0002-0448-8555</orcidid><orcidid>https://orcid.org/0000-0002-3885-6125</orcidid><orcidid>https://orcid.org/0000-0003-2575-2906</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024-01, Vol.21, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_3035282343
source IEEE Electronic Library (IEL)
subjects Acoustic logging curves
Acoustics
Convolution
Correlation
Deep learning
Dual attention phasenet
Feature extraction
First arrival extraction
Logging
Noise
Shape
title Intelligent Identification First Arrivals of Acoustic Logging Curves Using Dual Attention PhaseNet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Identification%20First%20Arrivals%20of%20Acoustic%20Logging%20Curves%20Using%20Dual%20Attention%20PhaseNet&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhu,%20Li&rft.date=2024-01-01&rft.volume=21&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3383212&rft_dat=%3Cproquest_RIE%3E3035282343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035282343&rft_id=info:pmid/&rft_ieee_id=10487641&rfr_iscdi=true