Deep Generative Model Conditioned by Phase Picks for Synthesizing Labeled Seismic Waveforms With Limited Data

Shortage of labeled seismic field data poses a significant challenge for deep-learning (DL)-related applications in seismology. One approach to mitigate this issue is to use synthetic waveforms as a complement to field data. However, traditional physics-driven methods for synthesizing data are compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Hauptverfasser: Chen, Guoyi, Li, Junlun, Guo, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Chen, Guoyi
Li, Junlun
Guo, Hao
description Shortage of labeled seismic field data poses a significant challenge for deep-learning (DL)-related applications in seismology. One approach to mitigate this issue is to use synthetic waveforms as a complement to field data. However, traditional physics-driven methods for synthesizing data are computationally expensive and may fail to capture features key for understanding the subsurface as in real seismic waveforms. In this study, we develop a DL-based generative model, PhaseGen, for synthesizing realistic seismic waveforms dictated by provided P- and S-wave arrival labels. Contrary to previous generative models that require a large amount of data for training, the proposed model can be trained with only 100 seismic events recorded by a single seismic station. The fidelity, diversity, and alignment for waveforms synthesized by PhaseGen with diverse P- and S-wave arrival labels are quantitatively evaluated. Also, PhaseGen is used to augment a labeled seismic dataset used for training a deep neural network for the phase picking task, and it is found that the model training using augmented datasets improves the picking performance. It is expected that PhaseGen can offer a valuable alternative for rapid seismic waveform synthesis and provide a promising solution for the lack of labeled seismic data.
doi_str_mv 10.1109/TGRS.2024.3384768
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3035278982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491374</ieee_id><sourcerecordid>3035278982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f4f8588de740f9ed6e053a8ac5e942a75545607bf02a98fd19fb2bd30d744ca3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOBiwHXqfCYzS6lahYjFFroMk8wbO7VJ6kxaqL_elHbh6i3uuffBQeiWkhGlRD_MJ5-zESNMjDhXIkvVGRpQKVVCUiHO0YBQnSZMaXaJrmJcEUKFpNkA1U8AGzyBBoLp_A7we2thjcdtY33n2wYsLvd4ujQR8NRX3xG7NuDZvumWEP2vb75wbkpY99wMfKx9hRdmBz1UR7zw3RLnvvZdHz-ZzlyjC2fWEW5Od4jmL8_z8WuSf0zexo95UjGRdokTTkmlLGSCOA02BSK5UaaSoAUzmZRCpiQrHWFGK2epdiUrLSc2E6IyfIjuj7Ob0P5sIXbFqt2Gpv9YcMIly5RWrKfokapCG2MAV2yCr03YF5QUB6nFQWpxkFqcpPadu2PHA8A_XmjKM8H_AJjuc_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035278982</pqid></control><display><type>article</type><title>Deep Generative Model Conditioned by Phase Picks for Synthesizing Labeled Seismic Waveforms With Limited Data</title><source>IEEE Xplore</source><creator>Chen, Guoyi ; Li, Junlun ; Guo, Hao</creator><creatorcontrib>Chen, Guoyi ; Li, Junlun ; Guo, Hao</creatorcontrib><description>Shortage of labeled seismic field data poses a significant challenge for deep-learning (DL)-related applications in seismology. One approach to mitigate this issue is to use synthetic waveforms as a complement to field data. However, traditional physics-driven methods for synthesizing data are computationally expensive and may fail to capture features key for understanding the subsurface as in real seismic waveforms. In this study, we develop a DL-based generative model, PhaseGen, for synthesizing realistic seismic waveforms dictated by provided P- and S-wave arrival labels. Contrary to previous generative models that require a large amount of data for training, the proposed model can be trained with only 100 seismic events recorded by a single seismic station. The fidelity, diversity, and alignment for waveforms synthesized by PhaseGen with diverse P- and S-wave arrival labels are quantitatively evaluated. Also, PhaseGen is used to augment a labeled seismic dataset used for training a deep neural network for the phase picking task, and it is found that the model training using augmented datasets improves the picking performance. It is expected that PhaseGen can offer a valuable alternative for rapid seismic waveform synthesis and provide a promising solution for the lack of labeled seismic data.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3384768</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Data augmentation ; Data models ; Datasets ; deep learning (DL) ; Earthquakes ; Feature extraction ; Generative adversarial networks ; generative model ; Generators ; Labels ; Machine learning ; Neural networks ; P waves ; Physics ; S waves ; Seismic activity ; Seismic data ; seismic waveform synthesis ; Seismology ; Synthesis ; Training ; Waveforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f4f8588de740f9ed6e053a8ac5e942a75545607bf02a98fd19fb2bd30d744ca3</cites><orcidid>0000-0001-8287-3689 ; 0000-0001-9143-918X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491374$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Guoyi</creatorcontrib><creatorcontrib>Li, Junlun</creatorcontrib><creatorcontrib>Guo, Hao</creatorcontrib><title>Deep Generative Model Conditioned by Phase Picks for Synthesizing Labeled Seismic Waveforms With Limited Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Shortage of labeled seismic field data poses a significant challenge for deep-learning (DL)-related applications in seismology. One approach to mitigate this issue is to use synthetic waveforms as a complement to field data. However, traditional physics-driven methods for synthesizing data are computationally expensive and may fail to capture features key for understanding the subsurface as in real seismic waveforms. In this study, we develop a DL-based generative model, PhaseGen, for synthesizing realistic seismic waveforms dictated by provided P- and S-wave arrival labels. Contrary to previous generative models that require a large amount of data for training, the proposed model can be trained with only 100 seismic events recorded by a single seismic station. The fidelity, diversity, and alignment for waveforms synthesized by PhaseGen with diverse P- and S-wave arrival labels are quantitatively evaluated. Also, PhaseGen is used to augment a labeled seismic dataset used for training a deep neural network for the phase picking task, and it is found that the model training using augmented datasets improves the picking performance. It is expected that PhaseGen can offer a valuable alternative for rapid seismic waveform synthesis and provide a promising solution for the lack of labeled seismic data.</description><subject>Artificial neural networks</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Datasets</subject><subject>deep learning (DL)</subject><subject>Earthquakes</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>generative model</subject><subject>Generators</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>P waves</subject><subject>Physics</subject><subject>S waves</subject><subject>Seismic activity</subject><subject>Seismic data</subject><subject>seismic waveform synthesis</subject><subject>Seismology</subject><subject>Synthesis</subject><subject>Training</subject><subject>Waveforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOBiwHXqfCYzS6lahYjFFroMk8wbO7VJ6kxaqL_elHbh6i3uuffBQeiWkhGlRD_MJ5-zESNMjDhXIkvVGRpQKVVCUiHO0YBQnSZMaXaJrmJcEUKFpNkA1U8AGzyBBoLp_A7we2thjcdtY33n2wYsLvd4ujQR8NRX3xG7NuDZvumWEP2vb75wbkpY99wMfKx9hRdmBz1UR7zw3RLnvvZdHz-ZzlyjC2fWEW5Od4jmL8_z8WuSf0zexo95UjGRdokTTkmlLGSCOA02BSK5UaaSoAUzmZRCpiQrHWFGK2epdiUrLSc2E6IyfIjuj7Ob0P5sIXbFqt2Gpv9YcMIly5RWrKfokapCG2MAV2yCr03YF5QUB6nFQWpxkFqcpPadu2PHA8A_XmjKM8H_AJjuc_U</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Guoyi</creator><creator>Li, Junlun</creator><creator>Guo, Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8287-3689</orcidid><orcidid>https://orcid.org/0000-0001-9143-918X</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Generative Model Conditioned by Phase Picks for Synthesizing Labeled Seismic Waveforms With Limited Data</title><author>Chen, Guoyi ; Li, Junlun ; Guo, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f4f8588de740f9ed6e053a8ac5e942a75545607bf02a98fd19fb2bd30d744ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Datasets</topic><topic>deep learning (DL)</topic><topic>Earthquakes</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>generative model</topic><topic>Generators</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>P waves</topic><topic>Physics</topic><topic>S waves</topic><topic>Seismic activity</topic><topic>Seismic data</topic><topic>seismic waveform synthesis</topic><topic>Seismology</topic><topic>Synthesis</topic><topic>Training</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guoyi</creatorcontrib><creatorcontrib>Li, Junlun</creatorcontrib><creatorcontrib>Guo, Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Guoyi</au><au>Li, Junlun</au><au>Guo, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Generative Model Conditioned by Phase Picks for Synthesizing Labeled Seismic Waveforms With Limited Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Shortage of labeled seismic field data poses a significant challenge for deep-learning (DL)-related applications in seismology. One approach to mitigate this issue is to use synthetic waveforms as a complement to field data. However, traditional physics-driven methods for synthesizing data are computationally expensive and may fail to capture features key for understanding the subsurface as in real seismic waveforms. In this study, we develop a DL-based generative model, PhaseGen, for synthesizing realistic seismic waveforms dictated by provided P- and S-wave arrival labels. Contrary to previous generative models that require a large amount of data for training, the proposed model can be trained with only 100 seismic events recorded by a single seismic station. The fidelity, diversity, and alignment for waveforms synthesized by PhaseGen with diverse P- and S-wave arrival labels are quantitatively evaluated. Also, PhaseGen is used to augment a labeled seismic dataset used for training a deep neural network for the phase picking task, and it is found that the model training using augmented datasets improves the picking performance. It is expected that PhaseGen can offer a valuable alternative for rapid seismic waveform synthesis and provide a promising solution for the lack of labeled seismic data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3384768</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8287-3689</orcidid><orcidid>https://orcid.org/0000-0001-9143-918X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3035278982
source IEEE Xplore
subjects Artificial neural networks
Data augmentation
Data models
Datasets
deep learning (DL)
Earthquakes
Feature extraction
Generative adversarial networks
generative model
Generators
Labels
Machine learning
Neural networks
P waves
Physics
S waves
Seismic activity
Seismic data
seismic waveform synthesis
Seismology
Synthesis
Training
Waveforms
title Deep Generative Model Conditioned by Phase Picks for Synthesizing Labeled Seismic Waveforms With Limited Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Generative%20Model%20Conditioned%20by%20Phase%20Picks%20for%20Synthesizing%20Labeled%20Seismic%20Waveforms%20With%20Limited%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Guoyi&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3384768&rft_dat=%3Cproquest_RIE%3E3035278982%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035278982&rft_id=info:pmid/&rft_ieee_id=10491374&rfr_iscdi=true