Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping

The pristine LiNi 0.5 Mn 1.5 O 4 (LNMO) and Mo-F co-doped LiNi 0.5 Mn 1.5 O 4 spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2024-04, Vol.30 (4), p.1885-1895
Hauptverfasser: Weng, Yuling, Zhang, Hailang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1895
container_issue 4
container_start_page 1885
container_title Ionics
container_volume 30
creator Weng, Yuling
Zhang, Hailang
description The pristine LiNi 0.5 Mn 1.5 O 4 (LNMO) and Mo-F co-doped LiNi 0.5 Mn 1.5 O 4 spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g −1 at 5C, while the pristine sample reaches only 61.9 mAh g −1 . After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li + diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.
doi_str_mv 10.1007/s11581-023-05366-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3035136433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035136433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFb_gKsB11PffCSTLKW0KrR2o-shmbw0KU2mTqZI_71TI7hz9eBy7n1wCLnnMOMA-nHgPMk4AyEZJDJNmbogE56lgoFO4ZJMIFeaaVD6mtwMww4gTbnQE_K16Juit9hhH6iraWiQ4h5t8M422LW22NMD-tr57oydkVX71sIsWfd8lmwUtUVoXIW0KwL6ttgPNMIRYq3raVmEmJ5oeaJrx5bUOla5Q9tvb8lVHVm8-71T8rFcvM9f2Grz_Dp_WjEreR6YFhZVpdOSy0xniayksqqsEp1woUSdg8oELy0HpbStlM6jDIGA3KItC6vllDyMuwfvPo84BLNzR9_Hl0aCTLhMlZSREiNlvRsGj7U5-LYr_MlwMGfBZhRsomDzI9ioWJJjaYhwv0X_N_1P6xvQw3yb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035136433</pqid></control><display><type>article</type><title>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Weng, Yuling ; Zhang, Hailang</creator><creatorcontrib>Weng, Yuling ; Zhang, Hailang</creatorcontrib><description>The pristine LiNi 0.5 Mn 1.5 O 4 (LNMO) and Mo-F co-doped LiNi 0.5 Mn 1.5 O 4 spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g −1 at 5C, while the pristine sample reaches only 61.9 mAh g −1 . After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li + diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-023-05366-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Discharge ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electron microscopes ; Electron microscopy ; Energy Storage ; Fourier transforms ; FTIR spectrometers ; Infrared analysis ; Infrared spectrometers ; Lattice parameters ; Lithium-ion batteries ; Optical and Electronic Materials ; Photoelectrons ; Rechargeable batteries ; Renewable and Green Energy ; Rheological properties ; Room temperature ; X ray photoelectron spectroscopy</subject><ispartof>Ionics, 2024-04, Vol.30 (4), p.1885-1895</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</citedby><cites>FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-023-05366-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-023-05366-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Weng, Yuling</creatorcontrib><creatorcontrib>Zhang, Hailang</creatorcontrib><title>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The pristine LiNi 0.5 Mn 1.5 O 4 (LNMO) and Mo-F co-doped LiNi 0.5 Mn 1.5 O 4 spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g −1 at 5C, while the pristine sample reaches only 61.9 mAh g −1 . After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li + diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.</description><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Energy Storage</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Infrared analysis</subject><subject>Infrared spectrometers</subject><subject>Lattice parameters</subject><subject>Lithium-ion batteries</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Rheological properties</subject><subject>Room temperature</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRsFb_gKsB11PffCSTLKW0KrR2o-shmbw0KU2mTqZI_71TI7hz9eBy7n1wCLnnMOMA-nHgPMk4AyEZJDJNmbogE56lgoFO4ZJMIFeaaVD6mtwMww4gTbnQE_K16Juit9hhH6iraWiQ4h5t8M422LW22NMD-tr57oydkVX71sIsWfd8lmwUtUVoXIW0KwL6ttgPNMIRYq3raVmEmJ5oeaJrx5bUOla5Q9tvb8lVHVm8-71T8rFcvM9f2Grz_Dp_WjEreR6YFhZVpdOSy0xniayksqqsEp1woUSdg8oELy0HpbStlM6jDIGA3KItC6vllDyMuwfvPo84BLNzR9_Hl0aCTLhMlZSREiNlvRsGj7U5-LYr_MlwMGfBZhRsomDzI9ioWJJjaYhwv0X_N_1P6xvQw3yb</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Weng, Yuling</creator><creator>Zhang, Hailang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</title><author>Weng, Yuling ; Zhang, Hailang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Energy Storage</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Infrared analysis</topic><topic>Infrared spectrometers</topic><topic>Lattice parameters</topic><topic>Lithium-ion batteries</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Rheological properties</topic><topic>Room temperature</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Yuling</creatorcontrib><creatorcontrib>Zhang, Hailang</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Yuling</au><au>Zhang, Hailang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>1885</spage><epage>1895</epage><pages>1885-1895</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The pristine LiNi 0.5 Mn 1.5 O 4 (LNMO) and Mo-F co-doped LiNi 0.5 Mn 1.5 O 4 spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g −1 at 5C, while the pristine sample reaches only 61.9 mAh g −1 . After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li + diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-023-05366-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2024-04, Vol.30 (4), p.1885-1895
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_3035136433
source SpringerLink Journals - AutoHoldings
subjects Cathodes
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Discharge
Doping
Electrochemical analysis
Electrochemistry
Electrode materials
Electron microscopes
Electron microscopy
Energy Storage
Fourier transforms
FTIR spectrometers
Infrared analysis
Infrared spectrometers
Lattice parameters
Lithium-ion batteries
Optical and Electronic Materials
Photoelectrons
Rechargeable batteries
Renewable and Green Energy
Rheological properties
Room temperature
X ray photoelectron spectroscopy
title Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20the%20electrochemical%20performance%20of%20LiNi0.5Mn1.5O4%20cathode%20materials%20for%20Li-ion%20battery%20by%20Mo-F%20co-doping&rft.jtitle=Ionics&rft.au=Weng,%20Yuling&rft.date=2024-04-01&rft.volume=30&rft.issue=4&rft.spage=1885&rft.epage=1895&rft.pages=1885-1895&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-023-05366-4&rft_dat=%3Cproquest_cross%3E3035136433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035136433&rft_id=info:pmid/&rfr_iscdi=true