Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping
The pristine LiNi 0.5 Mn 1.5 O 4 (LNMO) and Mo-F co-doped LiNi 0.5 Mn 1.5 O 4 spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersiv...
Gespeichert in:
Veröffentlicht in: | Ionics 2024-04, Vol.30 (4), p.1885-1895 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1895 |
---|---|
container_issue | 4 |
container_start_page | 1885 |
container_title | Ionics |
container_volume | 30 |
creator | Weng, Yuling Zhang, Hailang |
description | The pristine LiNi
0.5
Mn
1.5
O
4
(LNMO) and Mo-F co-doped LiNi
0.5
Mn
1.5
O
4
spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g
−1
at 5C, while the pristine sample reaches only 61.9 mAh g
−1
. After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li
+
diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material. |
doi_str_mv | 10.1007/s11581-023-05366-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3035136433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035136433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</originalsourceid><addsrcrecordid>eNp9kE1Lw0AURQdRsFb_gKsB11PffCSTLKW0KrR2o-shmbw0KU2mTqZI_71TI7hz9eBy7n1wCLnnMOMA-nHgPMk4AyEZJDJNmbogE56lgoFO4ZJMIFeaaVD6mtwMww4gTbnQE_K16Juit9hhH6iraWiQ4h5t8M422LW22NMD-tr57oydkVX71sIsWfd8lmwUtUVoXIW0KwL6ttgPNMIRYq3raVmEmJ5oeaJrx5bUOla5Q9tvb8lVHVm8-71T8rFcvM9f2Grz_Dp_WjEreR6YFhZVpdOSy0xniayksqqsEp1woUSdg8oELy0HpbStlM6jDIGA3KItC6vllDyMuwfvPo84BLNzR9_Hl0aCTLhMlZSREiNlvRsGj7U5-LYr_MlwMGfBZhRsomDzI9ioWJJjaYhwv0X_N_1P6xvQw3yb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035136433</pqid></control><display><type>article</type><title>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</title><source>SpringerLink Journals - AutoHoldings</source><creator>Weng, Yuling ; Zhang, Hailang</creator><creatorcontrib>Weng, Yuling ; Zhang, Hailang</creatorcontrib><description>The pristine LiNi
0.5
Mn
1.5
O
4
(LNMO) and Mo-F co-doped LiNi
0.5
Mn
1.5
O
4
spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g
−1
at 5C, while the pristine sample reaches only 61.9 mAh g
−1
. After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li
+
diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-023-05366-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Discharge ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electron microscopes ; Electron microscopy ; Energy Storage ; Fourier transforms ; FTIR spectrometers ; Infrared analysis ; Infrared spectrometers ; Lattice parameters ; Lithium-ion batteries ; Optical and Electronic Materials ; Photoelectrons ; Rechargeable batteries ; Renewable and Green Energy ; Rheological properties ; Room temperature ; X ray photoelectron spectroscopy</subject><ispartof>Ionics, 2024-04, Vol.30 (4), p.1885-1895</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</citedby><cites>FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-023-05366-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-023-05366-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Weng, Yuling</creatorcontrib><creatorcontrib>Zhang, Hailang</creatorcontrib><title>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The pristine LiNi
0.5
Mn
1.5
O
4
(LNMO) and Mo-F co-doped LiNi
0.5
Mn
1.5
O
4
spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g
−1
at 5C, while the pristine sample reaches only 61.9 mAh g
−1
. After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li
+
diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.</description><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Energy Storage</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Infrared analysis</subject><subject>Infrared spectrometers</subject><subject>Lattice parameters</subject><subject>Lithium-ion batteries</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Rheological properties</subject><subject>Room temperature</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AURQdRsFb_gKsB11PffCSTLKW0KrR2o-shmbw0KU2mTqZI_71TI7hz9eBy7n1wCLnnMOMA-nHgPMk4AyEZJDJNmbogE56lgoFO4ZJMIFeaaVD6mtwMww4gTbnQE_K16Juit9hhH6iraWiQ4h5t8M422LW22NMD-tr57oydkVX71sIsWfd8lmwUtUVoXIW0KwL6ttgPNMIRYq3raVmEmJ5oeaJrx5bUOla5Q9tvb8lVHVm8-71T8rFcvM9f2Grz_Dp_WjEreR6YFhZVpdOSy0xniayksqqsEp1woUSdg8oELy0HpbStlM6jDIGA3KItC6vllDyMuwfvPo84BLNzR9_Hl0aCTLhMlZSREiNlvRsGj7U5-LYr_MlwMGfBZhRsomDzI9ioWJJjaYhwv0X_N_1P6xvQw3yb</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Weng, Yuling</creator><creator>Zhang, Hailang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</title><author>Weng, Yuling ; Zhang, Hailang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-72ce4d76b1387853d34c4bd5751242f904821bc10447cd4790072e0e1cecbac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Energy Storage</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Infrared analysis</topic><topic>Infrared spectrometers</topic><topic>Lattice parameters</topic><topic>Lithium-ion batteries</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Rheological properties</topic><topic>Room temperature</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Yuling</creatorcontrib><creatorcontrib>Zhang, Hailang</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Yuling</au><au>Zhang, Hailang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>1885</spage><epage>1895</epage><pages>1885-1895</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The pristine LiNi
0.5
Mn
1.5
O
4
(LNMO) and Mo-F co-doped LiNi
0.5
Mn
1.5
O
4
spinel materials were prepared via a rheological phase method. The four samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). Compared with the pristine LNMO sample, Mo-F co-doped LNMO materials could increase the lattice parameters, reduce particle sizes, and significantly improve the electrochemical performances of LNMO. The doped material exhibited optimum electrochemical properties when the Mo and F doping amounts were 1% and 3%, respectively, denoted as Mo/F-2. The discharge capacity retention of Mo/F-2 is 95.6%, which is higher than the pristine sample (87.7%) after 100 cycles at 1C and room temperature. Furthermore, the discharge-specific capacity of the Mo/F-2 sample reaches 113.4 mAh g
−1
at 5C, while the pristine sample reaches only 61.9 mAh g
−1
. After CV and EIS analysis, it was found that the Mo-F co-doped LNMO materials had better Li
+
diffusion kinetics than the pristine LNMO sample. Thus, Mo-F co-doping is considered an effective modification method for LNMO cathode material.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-023-05366-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2024-04, Vol.30 (4), p.1885-1895 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_3035136433 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cathodes Chemistry Chemistry and Materials Science Condensed Matter Physics Discharge Doping Electrochemical analysis Electrochemistry Electrode materials Electron microscopes Electron microscopy Energy Storage Fourier transforms FTIR spectrometers Infrared analysis Infrared spectrometers Lattice parameters Lithium-ion batteries Optical and Electronic Materials Photoelectrons Rechargeable batteries Renewable and Green Energy Rheological properties Room temperature X ray photoelectron spectroscopy |
title | Enhancement of the electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for Li-ion battery by Mo-F co-doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20the%20electrochemical%20performance%20of%20LiNi0.5Mn1.5O4%20cathode%20materials%20for%20Li-ion%20battery%20by%20Mo-F%20co-doping&rft.jtitle=Ionics&rft.au=Weng,%20Yuling&rft.date=2024-04-01&rft.volume=30&rft.issue=4&rft.spage=1885&rft.epage=1895&rft.pages=1885-1895&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-023-05366-4&rft_dat=%3Cproquest_cross%3E3035136433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035136433&rft_id=info:pmid/&rfr_iscdi=true |