Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere

We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 2023-10, Vol.66 (5-6), p.431-440
Hauptverfasser: Petrukhin, N. S., Pelinovsky, E. N., Talipova, T. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 5-6
container_start_page 431
container_title Radiophysics and quantum electronics
container_volume 66
creator Petrukhin, N. S.
Pelinovsky, E. N.
Talipova, T. G.
description We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.
doi_str_mv 10.1007/s11141-024-10305-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3035134554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A792826032</galeid><sourcerecordid>A792826032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-aff6836656fef7d52e5abe0ac93386951ef4d45f53fff6815293fc82c87bb5653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59Ukk-wHeFmKH4WCIIrHkKaTdstuUpOt0H9v6greJIeBzPPMDC8h14zeMkrLu8gYEyynXOSMApX54YRMmCwhrxmnp2RCKUBeCQHn5CLGLaVJE9WE3L-i7dAMrXcdxpg1xu_j0JrsQ39hzFqXaZfN3cb3fo0OUzNrht7H3QYDXpIzq7uIV791St4fH95mz_ni5Wk-axa5AVoPuba2qKAoZGHRlivJUeolUm1qgKqoJUMrVkJaCfZIMslrsKbipiqXS1lImJKbce4u-M89xkFt_T64tFIBBclASCkSdTtSa92hap31Q9AmvRX2rfEObZv-m7LmFS8o8CTwUTDBxxjQql1oex0OilF1jFWNsaoUq_qJVR2SBKMUE-zWGP5u-cf6BhWfemg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035134554</pqid></control><display><type>article</type><title>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</title><source>Springer Nature - Complete Springer Journals</source><creator>Petrukhin, N. S. ; Pelinovsky, E. N. ; Talipova, T. G.</creator><creatorcontrib>Petrukhin, N. S. ; Pelinovsky, E. N. ; Talipova, T. G.</creatorcontrib><description>We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.</description><identifier>ISSN: 0033-8443</identifier><identifier>EISSN: 1573-9120</identifier><identifier>DOI: 10.1007/s11141-024-10305-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic propagation ; Acoustic velocity ; Acoustic waves ; Astronomy ; Astrophysics and Astroparticles ; Gas density ; Gas pressure ; Gravitational fields ; Hadrons ; Heavy Ions ; Ideal gas ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Observations and Techniques ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Poisson equation ; Quantum Optics ; Specific gravity ; Theoretical ; Wave propagation</subject><ispartof>Radiophysics and quantum electronics, 2023-10, Vol.66 (5-6), p.431-440</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-aff6836656fef7d52e5abe0ac93386951ef4d45f53fff6815293fc82c87bb5653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11141-024-10305-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11141-024-10305-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Petrukhin, N. S.</creatorcontrib><creatorcontrib>Pelinovsky, E. N.</creatorcontrib><creatorcontrib>Talipova, T. G.</creatorcontrib><title>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</title><title>Radiophysics and quantum electronics</title><addtitle>Radiophys Quantum El</addtitle><description>We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.</description><subject>Acoustic propagation</subject><subject>Acoustic velocity</subject><subject>Acoustic waves</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Gas density</subject><subject>Gas pressure</subject><subject>Gravitational fields</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ideal gas</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Observations and Techniques</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poisson equation</subject><subject>Quantum Optics</subject><subject>Specific gravity</subject><subject>Theoretical</subject><subject>Wave propagation</subject><issn>0033-8443</issn><issn>1573-9120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59Ukk-wHeFmKH4WCIIrHkKaTdstuUpOt0H9v6greJIeBzPPMDC8h14zeMkrLu8gYEyynXOSMApX54YRMmCwhrxmnp2RCKUBeCQHn5CLGLaVJE9WE3L-i7dAMrXcdxpg1xu_j0JrsQ39hzFqXaZfN3cb3fo0OUzNrht7H3QYDXpIzq7uIV791St4fH95mz_ni5Wk-axa5AVoPuba2qKAoZGHRlivJUeolUm1qgKqoJUMrVkJaCfZIMslrsKbipiqXS1lImJKbce4u-M89xkFt_T64tFIBBclASCkSdTtSa92hap31Q9AmvRX2rfEObZv-m7LmFS8o8CTwUTDBxxjQql1oex0OilF1jFWNsaoUq_qJVR2SBKMUE-zWGP5u-cf6BhWfemg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Petrukhin, N. S.</creator><creator>Pelinovsky, E. N.</creator><creator>Talipova, T. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231001</creationdate><title>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</title><author>Petrukhin, N. S. ; Pelinovsky, E. N. ; Talipova, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-aff6836656fef7d52e5abe0ac93386951ef4d45f53fff6815293fc82c87bb5653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic propagation</topic><topic>Acoustic velocity</topic><topic>Acoustic waves</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Gas density</topic><topic>Gas pressure</topic><topic>Gravitational fields</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ideal gas</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Observations and Techniques</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poisson equation</topic><topic>Quantum Optics</topic><topic>Specific gravity</topic><topic>Theoretical</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrukhin, N. S.</creatorcontrib><creatorcontrib>Pelinovsky, E. N.</creatorcontrib><creatorcontrib>Talipova, T. G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiophysics and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrukhin, N. S.</au><au>Pelinovsky, E. N.</au><au>Talipova, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</atitle><jtitle>Radiophysics and quantum electronics</jtitle><stitle>Radiophys Quantum El</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>66</volume><issue>5-6</issue><spage>431</spage><epage>440</epage><pages>431-440</pages><issn>0033-8443</issn><eissn>1573-9120</eissn><abstract>We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11141-024-10305-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-8443
ispartof Radiophysics and quantum electronics, 2023-10, Vol.66 (5-6), p.431-440
issn 0033-8443
1573-9120
language eng
recordid cdi_proquest_journals_3035134554
source Springer Nature - Complete Springer Journals
subjects Acoustic propagation
Acoustic velocity
Acoustic waves
Astronomy
Astrophysics and Astroparticles
Gas density
Gas pressure
Gravitational fields
Hadrons
Heavy Ions
Ideal gas
Lasers
Mathematical and Computational Physics
Nuclear Physics
Observations and Techniques
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Poisson equation
Quantum Optics
Specific gravity
Theoretical
Wave propagation
title Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflectionless%20Acoustic%20Waves%20in%20an%20Inhomogeneous%20Atmosphere&rft.jtitle=Radiophysics%20and%20quantum%20electronics&rft.au=Petrukhin,%20N.%20S.&rft.date=2023-10-01&rft.volume=66&rft.issue=5-6&rft.spage=431&rft.epage=440&rft.pages=431-440&rft.issn=0033-8443&rft.eissn=1573-9120&rft_id=info:doi/10.1007/s11141-024-10305-y&rft_dat=%3Cgale_proqu%3EA792826032%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035134554&rft_id=info:pmid/&rft_galeid=A792826032&rfr_iscdi=true