Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere
We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approxim...
Gespeichert in:
Veröffentlicht in: | Radiophysics and quantum electronics 2023-10, Vol.66 (5-6), p.431-440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 5-6 |
container_start_page | 431 |
container_title | Radiophysics and quantum electronics |
container_volume | 66 |
creator | Petrukhin, N. S. Pelinovsky, E. N. Talipova, T. G. |
description | We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present. |
doi_str_mv | 10.1007/s11141-024-10305-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3035134554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A792826032</galeid><sourcerecordid>A792826032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-aff6836656fef7d52e5abe0ac93386951ef4d45f53fff6815293fc82c87bb5653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59Ukk-wHeFmKH4WCIIrHkKaTdstuUpOt0H9v6greJIeBzPPMDC8h14zeMkrLu8gYEyynXOSMApX54YRMmCwhrxmnp2RCKUBeCQHn5CLGLaVJE9WE3L-i7dAMrXcdxpg1xu_j0JrsQ39hzFqXaZfN3cb3fo0OUzNrht7H3QYDXpIzq7uIV791St4fH95mz_ni5Wk-axa5AVoPuba2qKAoZGHRlivJUeolUm1qgKqoJUMrVkJaCfZIMslrsKbipiqXS1lImJKbce4u-M89xkFt_T64tFIBBclASCkSdTtSa92hap31Q9AmvRX2rfEObZv-m7LmFS8o8CTwUTDBxxjQql1oex0OilF1jFWNsaoUq_qJVR2SBKMUE-zWGP5u-cf6BhWfemg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035134554</pqid></control><display><type>article</type><title>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</title><source>Springer Nature - Complete Springer Journals</source><creator>Petrukhin, N. S. ; Pelinovsky, E. N. ; Talipova, T. G.</creator><creatorcontrib>Petrukhin, N. S. ; Pelinovsky, E. N. ; Talipova, T. G.</creatorcontrib><description>We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.</description><identifier>ISSN: 0033-8443</identifier><identifier>EISSN: 1573-9120</identifier><identifier>DOI: 10.1007/s11141-024-10305-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic propagation ; Acoustic velocity ; Acoustic waves ; Astronomy ; Astrophysics and Astroparticles ; Gas density ; Gas pressure ; Gravitational fields ; Hadrons ; Heavy Ions ; Ideal gas ; Lasers ; Mathematical and Computational Physics ; Nuclear Physics ; Observations and Techniques ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Poisson equation ; Quantum Optics ; Specific gravity ; Theoretical ; Wave propagation</subject><ispartof>Radiophysics and quantum electronics, 2023-10, Vol.66 (5-6), p.431-440</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-aff6836656fef7d52e5abe0ac93386951ef4d45f53fff6815293fc82c87bb5653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11141-024-10305-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11141-024-10305-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Petrukhin, N. S.</creatorcontrib><creatorcontrib>Pelinovsky, E. N.</creatorcontrib><creatorcontrib>Talipova, T. G.</creatorcontrib><title>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</title><title>Radiophysics and quantum electronics</title><addtitle>Radiophys Quantum El</addtitle><description>We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.</description><subject>Acoustic propagation</subject><subject>Acoustic velocity</subject><subject>Acoustic waves</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Gas density</subject><subject>Gas pressure</subject><subject>Gravitational fields</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Ideal gas</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Observations and Techniques</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poisson equation</subject><subject>Quantum Optics</subject><subject>Specific gravity</subject><subject>Theoretical</subject><subject>Wave propagation</subject><issn>0033-8443</issn><issn>1573-9120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59Ukk-wHeFmKH4WCIIrHkKaTdstuUpOt0H9v6greJIeBzPPMDC8h14zeMkrLu8gYEyynXOSMApX54YRMmCwhrxmnp2RCKUBeCQHn5CLGLaVJE9WE3L-i7dAMrXcdxpg1xu_j0JrsQ39hzFqXaZfN3cb3fo0OUzNrht7H3QYDXpIzq7uIV791St4fH95mz_ni5Wk-axa5AVoPuba2qKAoZGHRlivJUeolUm1qgKqoJUMrVkJaCfZIMslrsKbipiqXS1lImJKbce4u-M89xkFt_T64tFIBBclASCkSdTtSa92hap31Q9AmvRX2rfEObZv-m7LmFS8o8CTwUTDBxxjQql1oex0OilF1jFWNsaoUq_qJVR2SBKMUE-zWGP5u-cf6BhWfemg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Petrukhin, N. S.</creator><creator>Pelinovsky, E. N.</creator><creator>Talipova, T. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231001</creationdate><title>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</title><author>Petrukhin, N. S. ; Pelinovsky, E. N. ; Talipova, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-aff6836656fef7d52e5abe0ac93386951ef4d45f53fff6815293fc82c87bb5653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic propagation</topic><topic>Acoustic velocity</topic><topic>Acoustic waves</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Gas density</topic><topic>Gas pressure</topic><topic>Gravitational fields</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Ideal gas</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Observations and Techniques</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poisson equation</topic><topic>Quantum Optics</topic><topic>Specific gravity</topic><topic>Theoretical</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrukhin, N. S.</creatorcontrib><creatorcontrib>Pelinovsky, E. N.</creatorcontrib><creatorcontrib>Talipova, T. G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiophysics and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrukhin, N. S.</au><au>Pelinovsky, E. N.</au><au>Talipova, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere</atitle><jtitle>Radiophysics and quantum electronics</jtitle><stitle>Radiophys Quantum El</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>66</volume><issue>5-6</issue><spage>431</spage><epage>440</epage><pages>431-440</pages><issn>0033-8443</issn><eissn>1573-9120</eissn><abstract>We study the vertical propagation of acoustic waves in a strongly inhomogeneous atmosphere. The class of monotonically varying profiles for the sound velocity, gas density, and gas pressure, for which acoustic waves can propagate with no reflection outside the framework of the classical WKB approximation, is found. This class of solutions, called reflectionless, is obtained by transforming the levels for waves in an ideal gas located in the gravity field into the Euler—Darboux—Poisson equation of a special kind, which has a solution in the form of a superposition of non-interacting waves propagating in opposite directions. It is noted that with this stratification, acoustic waves can have any frequency, in contrast to the exponential atmosphere, where the cutoff frequency is present.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11141-024-10305-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-8443 |
ispartof | Radiophysics and quantum electronics, 2023-10, Vol.66 (5-6), p.431-440 |
issn | 0033-8443 1573-9120 |
language | eng |
recordid | cdi_proquest_journals_3035134554 |
source | Springer Nature - Complete Springer Journals |
subjects | Acoustic propagation Acoustic velocity Acoustic waves Astronomy Astrophysics and Astroparticles Gas density Gas pressure Gravitational fields Hadrons Heavy Ions Ideal gas Lasers Mathematical and Computational Physics Nuclear Physics Observations and Techniques Optical Devices Optics Photonics Physics Physics and Astronomy Poisson equation Quantum Optics Specific gravity Theoretical Wave propagation |
title | Reflectionless Acoustic Waves in an Inhomogeneous Atmosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflectionless%20Acoustic%20Waves%20in%20an%20Inhomogeneous%20Atmosphere&rft.jtitle=Radiophysics%20and%20quantum%20electronics&rft.au=Petrukhin,%20N.%20S.&rft.date=2023-10-01&rft.volume=66&rft.issue=5-6&rft.spage=431&rft.epage=440&rft.pages=431-440&rft.issn=0033-8443&rft.eissn=1573-9120&rft_id=info:doi/10.1007/s11141-024-10305-y&rft_dat=%3Cgale_proqu%3EA792826032%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035134554&rft_id=info:pmid/&rft_galeid=A792826032&rfr_iscdi=true |