Higher-Order Analysis of Three-Dimensional Anisotropy in Imbalanced Alfvénic Turbulence

We analyze in-situ observations of imbalanced solar wind turbulence to evaluate MHD turbulence models grounded in "Critical Balance" (CB) and "Scale-Dependent Dynamic Alignment" (SDDA). At energy injection scales, both outgoing and ingoing modes exhibit a weak cascade; a simultan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Sioulas, Nikos, Zikopoulos, Themistocles, Chen, Shi, Velli, Marco, Bowen, Trevor, Mallet, Alfred, Sorriso-Valvo, Luca, Verdini, Andrea, Chandran, B D G, Martinović, Mihailo M, Cerri, S S, Davis, Nooshin, Dunn, Corina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sioulas, Nikos
Zikopoulos, Themistocles
Chen, Shi
Velli, Marco
Bowen, Trevor
Mallet, Alfred
Sorriso-Valvo, Luca
Verdini, Andrea
Chandran, B D G
Martinović, Mihailo M
Cerri, S S
Davis, Nooshin
Dunn, Corina
description We analyze in-situ observations of imbalanced solar wind turbulence to evaluate MHD turbulence models grounded in "Critical Balance" (CB) and "Scale-Dependent Dynamic Alignment" (SDDA). At energy injection scales, both outgoing and ingoing modes exhibit a weak cascade; a simultaneous tightening of SDDA is noted. Outgoing modes persist in a weak cascade across the inertial range, while ingoing modes shift to a strong cascade at \(\lambda \approx 3 \times 10^{4} d_i\), with associated spectral scalings deviating from expected behavior due to "anomalous coherence" effects. The inertial range comprises two distinct sub-inertial segments. Beyond \(\lambda \gtrsim 100 d_i\), eddies adopt a field-aligned tube topology, with SDDA signatures mainly evident in high amplitude fluctuations. The scaling exponents \(\zeta_{n}\) of the \(n\)-th order conditional structure functions, orthogonal to both the local mean field and fluctuation direction, align with the analytical models of Chandran et al. 2015 and Mallet et al. 2017, indicating "multifractal" statistics and strong intermittency; however, scaling in parallel and displacement components is more concave than predicted, possibly influenced by expansion effects. Below \(\lambda \approx 100 d_i\), eddies become increasingly anisotropic, evolving into thin current sheet-like structures. Concurrently, \(\zeta_{n}\) scales linearly with order, marking a shift towards "monofractal" statistics. At \(\lambda \approx 8 d_i\), the increase in aspect ratio halts, and the eddies become quasi-isotropic. This change may signal tearing instability, leading to reconnection, or result from energy redirection into the ion-cyclotron wave spectrum, aligning with the "helicity barrier". Our analysis utilizes 5-point structure functions, proving more effective than the traditional 2-point method in capturing steep scaling behaviors at smaller scales.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3034554924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034554924</sourcerecordid><originalsourceid>FETCH-proquest_journals_30345549243</originalsourceid><addsrcrecordid>eNqNjEsKwjAURYMgWLR7CDgO1CT1Myx-qCMnHTgr_bzalDSpea3QJbkON2YHLsDRgXsuZ0Y8LsSG7SXnC-IjNkEQ8O2Oh6HwyD1Wjxocu7kSHI1MpkdUSG1Fk9oBsJNqwaCyk5isQts7241UGXpt80xnpoCSRrp6fd5GFTQZXD5omNYVmVeZRvB_XJL15ZwcY9Y5-xwA-7Sxg5uymIpAyDCUBy7Ff68v1VBCkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034554924</pqid></control><display><type>article</type><title>Higher-Order Analysis of Three-Dimensional Anisotropy in Imbalanced Alfvénic Turbulence</title><source>Free E- Journals</source><creator>Sioulas, Nikos ; Zikopoulos, Themistocles ; Chen, Shi ; Velli, Marco ; Bowen, Trevor ; Mallet, Alfred ; Sorriso-Valvo, Luca ; Verdini, Andrea ; Chandran, B D G ; Martinović, Mihailo M ; Cerri, S S ; Davis, Nooshin ; Dunn, Corina</creator><creatorcontrib>Sioulas, Nikos ; Zikopoulos, Themistocles ; Chen, Shi ; Velli, Marco ; Bowen, Trevor ; Mallet, Alfred ; Sorriso-Valvo, Luca ; Verdini, Andrea ; Chandran, B D G ; Martinović, Mihailo M ; Cerri, S S ; Davis, Nooshin ; Dunn, Corina</creatorcontrib><description>We analyze in-situ observations of imbalanced solar wind turbulence to evaluate MHD turbulence models grounded in "Critical Balance" (CB) and "Scale-Dependent Dynamic Alignment" (SDDA). At energy injection scales, both outgoing and ingoing modes exhibit a weak cascade; a simultaneous tightening of SDDA is noted. Outgoing modes persist in a weak cascade across the inertial range, while ingoing modes shift to a strong cascade at \(\lambda \approx 3 \times 10^{4} d_i\), with associated spectral scalings deviating from expected behavior due to "anomalous coherence" effects. The inertial range comprises two distinct sub-inertial segments. Beyond \(\lambda \gtrsim 100 d_i\), eddies adopt a field-aligned tube topology, with SDDA signatures mainly evident in high amplitude fluctuations. The scaling exponents \(\zeta_{n}\) of the \(n\)-th order conditional structure functions, orthogonal to both the local mean field and fluctuation direction, align with the analytical models of Chandran et al. 2015 and Mallet et al. 2017, indicating "multifractal" statistics and strong intermittency; however, scaling in parallel and displacement components is more concave than predicted, possibly influenced by expansion effects. Below \(\lambda \approx 100 d_i\), eddies become increasingly anisotropic, evolving into thin current sheet-like structures. Concurrently, \(\zeta_{n}\) scales linearly with order, marking a shift towards "monofractal" statistics. At \(\lambda \approx 8 d_i\), the increase in aspect ratio halts, and the eddies become quasi-isotropic. This change may signal tearing instability, leading to reconnection, or result from energy redirection into the ion-cyclotron wave spectrum, aligning with the "helicity barrier". Our analysis utilizes 5-point structure functions, proving more effective than the traditional 2-point method in capturing steep scaling behaviors at smaller scales.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Aspect ratio ; Current sheets ; Cyclotrons ; Helicity ; Magnetohydrodynamic turbulence ; Scaling ; Solar wind ; Three dimensional analysis ; Topology ; Turbulence models ; Vortices ; Wave spectra</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Sioulas, Nikos</creatorcontrib><creatorcontrib>Zikopoulos, Themistocles</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Velli, Marco</creatorcontrib><creatorcontrib>Bowen, Trevor</creatorcontrib><creatorcontrib>Mallet, Alfred</creatorcontrib><creatorcontrib>Sorriso-Valvo, Luca</creatorcontrib><creatorcontrib>Verdini, Andrea</creatorcontrib><creatorcontrib>Chandran, B D G</creatorcontrib><creatorcontrib>Martinović, Mihailo M</creatorcontrib><creatorcontrib>Cerri, S S</creatorcontrib><creatorcontrib>Davis, Nooshin</creatorcontrib><creatorcontrib>Dunn, Corina</creatorcontrib><title>Higher-Order Analysis of Three-Dimensional Anisotropy in Imbalanced Alfvénic Turbulence</title><title>arXiv.org</title><description>We analyze in-situ observations of imbalanced solar wind turbulence to evaluate MHD turbulence models grounded in "Critical Balance" (CB) and "Scale-Dependent Dynamic Alignment" (SDDA). At energy injection scales, both outgoing and ingoing modes exhibit a weak cascade; a simultaneous tightening of SDDA is noted. Outgoing modes persist in a weak cascade across the inertial range, while ingoing modes shift to a strong cascade at \(\lambda \approx 3 \times 10^{4} d_i\), with associated spectral scalings deviating from expected behavior due to "anomalous coherence" effects. The inertial range comprises two distinct sub-inertial segments. Beyond \(\lambda \gtrsim 100 d_i\), eddies adopt a field-aligned tube topology, with SDDA signatures mainly evident in high amplitude fluctuations. The scaling exponents \(\zeta_{n}\) of the \(n\)-th order conditional structure functions, orthogonal to both the local mean field and fluctuation direction, align with the analytical models of Chandran et al. 2015 and Mallet et al. 2017, indicating "multifractal" statistics and strong intermittency; however, scaling in parallel and displacement components is more concave than predicted, possibly influenced by expansion effects. Below \(\lambda \approx 100 d_i\), eddies become increasingly anisotropic, evolving into thin current sheet-like structures. Concurrently, \(\zeta_{n}\) scales linearly with order, marking a shift towards "monofractal" statistics. At \(\lambda \approx 8 d_i\), the increase in aspect ratio halts, and the eddies become quasi-isotropic. This change may signal tearing instability, leading to reconnection, or result from energy redirection into the ion-cyclotron wave spectrum, aligning with the "helicity barrier". Our analysis utilizes 5-point structure functions, proving more effective than the traditional 2-point method in capturing steep scaling behaviors at smaller scales.</description><subject>Anisotropy</subject><subject>Aspect ratio</subject><subject>Current sheets</subject><subject>Cyclotrons</subject><subject>Helicity</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Scaling</subject><subject>Solar wind</subject><subject>Three dimensional analysis</subject><subject>Topology</subject><subject>Turbulence models</subject><subject>Vortices</subject><subject>Wave spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAURYMgWLR7CDgO1CT1Myx-qCMnHTgr_bzalDSpea3QJbkON2YHLsDRgXsuZ0Y8LsSG7SXnC-IjNkEQ8O2Oh6HwyD1Wjxocu7kSHI1MpkdUSG1Fk9oBsJNqwaCyk5isQts7241UGXpt80xnpoCSRrp6fd5GFTQZXD5omNYVmVeZRvB_XJL15ZwcY9Y5-xwA-7Sxg5uymIpAyDCUBy7Ff68v1VBCkw</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Sioulas, Nikos</creator><creator>Zikopoulos, Themistocles</creator><creator>Chen, Shi</creator><creator>Velli, Marco</creator><creator>Bowen, Trevor</creator><creator>Mallet, Alfred</creator><creator>Sorriso-Valvo, Luca</creator><creator>Verdini, Andrea</creator><creator>Chandran, B D G</creator><creator>Martinović, Mihailo M</creator><creator>Cerri, S S</creator><creator>Davis, Nooshin</creator><creator>Dunn, Corina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240405</creationdate><title>Higher-Order Analysis of Three-Dimensional Anisotropy in Imbalanced Alfvénic Turbulence</title><author>Sioulas, Nikos ; Zikopoulos, Themistocles ; Chen, Shi ; Velli, Marco ; Bowen, Trevor ; Mallet, Alfred ; Sorriso-Valvo, Luca ; Verdini, Andrea ; Chandran, B D G ; Martinović, Mihailo M ; Cerri, S S ; Davis, Nooshin ; Dunn, Corina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30345549243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Aspect ratio</topic><topic>Current sheets</topic><topic>Cyclotrons</topic><topic>Helicity</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Scaling</topic><topic>Solar wind</topic><topic>Three dimensional analysis</topic><topic>Topology</topic><topic>Turbulence models</topic><topic>Vortices</topic><topic>Wave spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Sioulas, Nikos</creatorcontrib><creatorcontrib>Zikopoulos, Themistocles</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Velli, Marco</creatorcontrib><creatorcontrib>Bowen, Trevor</creatorcontrib><creatorcontrib>Mallet, Alfred</creatorcontrib><creatorcontrib>Sorriso-Valvo, Luca</creatorcontrib><creatorcontrib>Verdini, Andrea</creatorcontrib><creatorcontrib>Chandran, B D G</creatorcontrib><creatorcontrib>Martinović, Mihailo M</creatorcontrib><creatorcontrib>Cerri, S S</creatorcontrib><creatorcontrib>Davis, Nooshin</creatorcontrib><creatorcontrib>Dunn, Corina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sioulas, Nikos</au><au>Zikopoulos, Themistocles</au><au>Chen, Shi</au><au>Velli, Marco</au><au>Bowen, Trevor</au><au>Mallet, Alfred</au><au>Sorriso-Valvo, Luca</au><au>Verdini, Andrea</au><au>Chandran, B D G</au><au>Martinović, Mihailo M</au><au>Cerri, S S</au><au>Davis, Nooshin</au><au>Dunn, Corina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Higher-Order Analysis of Three-Dimensional Anisotropy in Imbalanced Alfvénic Turbulence</atitle><jtitle>arXiv.org</jtitle><date>2024-04-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We analyze in-situ observations of imbalanced solar wind turbulence to evaluate MHD turbulence models grounded in "Critical Balance" (CB) and "Scale-Dependent Dynamic Alignment" (SDDA). At energy injection scales, both outgoing and ingoing modes exhibit a weak cascade; a simultaneous tightening of SDDA is noted. Outgoing modes persist in a weak cascade across the inertial range, while ingoing modes shift to a strong cascade at \(\lambda \approx 3 \times 10^{4} d_i\), with associated spectral scalings deviating from expected behavior due to "anomalous coherence" effects. The inertial range comprises two distinct sub-inertial segments. Beyond \(\lambda \gtrsim 100 d_i\), eddies adopt a field-aligned tube topology, with SDDA signatures mainly evident in high amplitude fluctuations. The scaling exponents \(\zeta_{n}\) of the \(n\)-th order conditional structure functions, orthogonal to both the local mean field and fluctuation direction, align with the analytical models of Chandran et al. 2015 and Mallet et al. 2017, indicating "multifractal" statistics and strong intermittency; however, scaling in parallel and displacement components is more concave than predicted, possibly influenced by expansion effects. Below \(\lambda \approx 100 d_i\), eddies become increasingly anisotropic, evolving into thin current sheet-like structures. Concurrently, \(\zeta_{n}\) scales linearly with order, marking a shift towards "monofractal" statistics. At \(\lambda \approx 8 d_i\), the increase in aspect ratio halts, and the eddies become quasi-isotropic. This change may signal tearing instability, leading to reconnection, or result from energy redirection into the ion-cyclotron wave spectrum, aligning with the "helicity barrier". Our analysis utilizes 5-point structure functions, proving more effective than the traditional 2-point method in capturing steep scaling behaviors at smaller scales.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3034554924
source Free E- Journals
subjects Anisotropy
Aspect ratio
Current sheets
Cyclotrons
Helicity
Magnetohydrodynamic turbulence
Scaling
Solar wind
Three dimensional analysis
Topology
Turbulence models
Vortices
Wave spectra
title Higher-Order Analysis of Three-Dimensional Anisotropy in Imbalanced Alfvénic Turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Higher-Order%20Analysis%20of%20Three-Dimensional%20Anisotropy%20in%20Imbalanced%20Alfv%C3%A9nic%20Turbulence&rft.jtitle=arXiv.org&rft.au=Sioulas,%20Nikos&rft.date=2024-04-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3034554924%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034554924&rft_id=info:pmid/&rfr_iscdi=true