On the stationarity for nonlinear optimization problems with polyhedral constraints

For polyhedral constrained optimization problems and a feasible point x , it is shown that the projection of the negative gradient on the tangent cone, denoted ∇ Ω f ( x ) , has an orthogonal decomposition of the form β ( x ) + φ ( x ) . At a stationary point, ∇ Ω f ( x ) = 0 so ‖ ∇ Ω f ( x ) ‖ refl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024-05, Vol.205 (1-2), p.107-134
Hauptverfasser: di Serafino, Daniela, Hager, William W., Toraldo, Gerardo, Viola, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1-2
container_start_page 107
container_title Mathematical programming
container_volume 205
creator di Serafino, Daniela
Hager, William W.
Toraldo, Gerardo
Viola, Marco
description For polyhedral constrained optimization problems and a feasible point x , it is shown that the projection of the negative gradient on the tangent cone, denoted ∇ Ω f ( x ) , has an orthogonal decomposition of the form β ( x ) + φ ( x ) . At a stationary point, ∇ Ω f ( x ) = 0 so ‖ ∇ Ω f ( x ) ‖ reflects the distance to a stationary point. Away from a stationary point, ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ measure different aspects of optimality since β ( x ) only vanishes when the KKT multipliers at x have the correct sign, while φ ( x ) only vanishes when x is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ .
doi_str_mv 10.1007/s10107-023-01979-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3034029534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034029534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5519903be0cf00b280b43b7ddc0013a3644534598e54a31814185a1c406a3c1e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Rmk-xujlL8gkIP6jlkt1mbsk1qkiL117vtCt48zWHe553hIeQa4RYBqruEgFAxKDgDVJVi6oRMUPCSiVKUp2QCUEgmS4RzcpHSGgCQ1_WEvC48zStLUzbZBW-iy3vahUh98L3z1kQattlt3PdxT7cxNL3dJPrl8opuQ79f2WU0PW2DTzka53O6JGed6ZO9-p1T8v748DZ7ZvPF08vsfs5aXvLMpESlgDcW2g6gKWpoBG-q5bI9PGd4KYTkQqraSmE41iiwlgZbAaXhLVo-JTdj7_DU586mrNdhF_1wUnPgAgo18EOqGFNtDClF2-ltdBsT9xpBH-TpUZ4e5OmjPK0GiI9QGsL-w8a_6n-oH0ZIcio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034029534</pqid></control><display><type>article</type><title>On the stationarity for nonlinear optimization problems with polyhedral constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>di Serafino, Daniela ; Hager, William W. ; Toraldo, Gerardo ; Viola, Marco</creator><creatorcontrib>di Serafino, Daniela ; Hager, William W. ; Toraldo, Gerardo ; Viola, Marco</creatorcontrib><description>For polyhedral constrained optimization problems and a feasible point x , it is shown that the projection of the negative gradient on the tangent cone, denoted ∇ Ω f ( x ) , has an orthogonal decomposition of the form β ( x ) + φ ( x ) . At a stationary point, ∇ Ω f ( x ) = 0 so ‖ ∇ Ω f ( x ) ‖ reflects the distance to a stationary point. Away from a stationary point, ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ measure different aspects of optimality since β ( x ) only vanishes when the KKT multipliers at x have the correct sign, while φ ( x ) only vanishes when x is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ .</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-023-01979-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Constraints ; Full Length Paper ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Quadratic programming ; Theoretical</subject><ispartof>Mathematical programming, 2024-05, Vol.205 (1-2), p.107-134</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5519903be0cf00b280b43b7ddc0013a3644534598e54a31814185a1c406a3c1e3</citedby><cites>FETCH-LOGICAL-c363t-5519903be0cf00b280b43b7ddc0013a3644534598e54a31814185a1c406a3c1e3</cites><orcidid>0000-0002-2140-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-023-01979-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-023-01979-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>di Serafino, Daniela</creatorcontrib><creatorcontrib>Hager, William W.</creatorcontrib><creatorcontrib>Toraldo, Gerardo</creatorcontrib><creatorcontrib>Viola, Marco</creatorcontrib><title>On the stationarity for nonlinear optimization problems with polyhedral constraints</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>For polyhedral constrained optimization problems and a feasible point x , it is shown that the projection of the negative gradient on the tangent cone, denoted ∇ Ω f ( x ) , has an orthogonal decomposition of the form β ( x ) + φ ( x ) . At a stationary point, ∇ Ω f ( x ) = 0 so ‖ ∇ Ω f ( x ) ‖ reflects the distance to a stationary point. Away from a stationary point, ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ measure different aspects of optimality since β ( x ) only vanishes when the KKT multipliers at x have the correct sign, while φ ( x ) only vanishes when x is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ .</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Constraints</subject><subject>Full Length Paper</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Rmk-xujlL8gkIP6jlkt1mbsk1qkiL117vtCt48zWHe553hIeQa4RYBqruEgFAxKDgDVJVi6oRMUPCSiVKUp2QCUEgmS4RzcpHSGgCQ1_WEvC48zStLUzbZBW-iy3vahUh98L3z1kQattlt3PdxT7cxNL3dJPrl8opuQ79f2WU0PW2DTzka53O6JGed6ZO9-p1T8v748DZ7ZvPF08vsfs5aXvLMpESlgDcW2g6gKWpoBG-q5bI9PGd4KYTkQqraSmE41iiwlgZbAaXhLVo-JTdj7_DU586mrNdhF_1wUnPgAgo18EOqGFNtDClF2-ltdBsT9xpBH-TpUZ4e5OmjPK0GiI9QGsL-w8a_6n-oH0ZIcio</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>di Serafino, Daniela</creator><creator>Hager, William W.</creator><creator>Toraldo, Gerardo</creator><creator>Viola, Marco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2140-8094</orcidid></search><sort><creationdate>20240501</creationdate><title>On the stationarity for nonlinear optimization problems with polyhedral constraints</title><author>di Serafino, Daniela ; Hager, William W. ; Toraldo, Gerardo ; Viola, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5519903be0cf00b280b43b7ddc0013a3644534598e54a31814185a1c406a3c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Constraints</topic><topic>Full Length Paper</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>di Serafino, Daniela</creatorcontrib><creatorcontrib>Hager, William W.</creatorcontrib><creatorcontrib>Toraldo, Gerardo</creatorcontrib><creatorcontrib>Viola, Marco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>di Serafino, Daniela</au><au>Hager, William W.</au><au>Toraldo, Gerardo</au><au>Viola, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stationarity for nonlinear optimization problems with polyhedral constraints</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>205</volume><issue>1-2</issue><spage>107</spage><epage>134</epage><pages>107-134</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>For polyhedral constrained optimization problems and a feasible point x , it is shown that the projection of the negative gradient on the tangent cone, denoted ∇ Ω f ( x ) , has an orthogonal decomposition of the form β ( x ) + φ ( x ) . At a stationary point, ∇ Ω f ( x ) = 0 so ‖ ∇ Ω f ( x ) ‖ reflects the distance to a stationary point. Away from a stationary point, ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ measure different aspects of optimality since β ( x ) only vanishes when the KKT multipliers at x have the correct sign, while φ ( x ) only vanishes when x is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between ‖ β ( x ) ‖ and ‖ φ ( x ) ‖ .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-023-01979-9</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-2140-8094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2024-05, Vol.205 (1-2), p.107-134
issn 0025-5610
1436-4646
language eng
recordid cdi_proquest_journals_3034029534
source Springer Nature - Complete Springer Journals
subjects Algorithms
Calculus of Variations and Optimal Control
Optimization
Combinatorics
Constraints
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Quadratic programming
Theoretical
title On the stationarity for nonlinear optimization problems with polyhedral constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stationarity%20for%20nonlinear%20optimization%20problems%20with%20polyhedral%20constraints&rft.jtitle=Mathematical%20programming&rft.au=di%20Serafino,%20Daniela&rft.date=2024-05-01&rft.volume=205&rft.issue=1-2&rft.spage=107&rft.epage=134&rft.pages=107-134&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-023-01979-9&rft_dat=%3Cproquest_cross%3E3034029534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034029534&rft_id=info:pmid/&rfr_iscdi=true