Attosecond-resolved non-dipole photoionization dynamics

Light–matter interactions are usually described within the electric-dipole approximation, where the magnetic-field component and the spatial variation of the light electric field over the relevant electronic length scales are both ignored. Non-dipole effects in photoionization were revealed to be ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2024-04, Vol.18 (4), p.311-317
Hauptverfasser: Liang, Jintai, Han, Meng, Liao, Yijie, Ji, Jia-bao, Leung, Chung Sum, Jiang, Wei-Chao, Ueda, Kiyoshi, Zhou, Yueming, Lu, Peixiang, Wörner, Hans Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 4
container_start_page 311
container_title Nature photonics
container_volume 18
creator Liang, Jintai
Han, Meng
Liao, Yijie
Ji, Jia-bao
Leung, Chung Sum
Jiang, Wei-Chao
Ueda, Kiyoshi
Zhou, Yueming
Lu, Peixiang
Wörner, Hans Jakob
description Light–matter interactions are usually described within the electric-dipole approximation, where the magnetic-field component and the spatial variation of the light electric field over the relevant electronic length scales are both ignored. Non-dipole effects in photoionization were revealed to be tiny from the infrared to the soft X-ray domains, and all non-dipole observations reported so far were limited to single-pulse, single-colour measurements. Here we advance attosecond time-resolved spectroscopy into the non-dipole interaction regime. Using a self-referenced attosecond photoelectron interferometry on helium atoms, we resolve the electron subcycle motion along the light propagation direction in the 15 pm range driven by the magnetic component of a near-infrared laser field. Furthermore, we measure a time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions by resolving the asymmetry of the photoelectron forward–backward yields with attosecond resolution. These fundamental findings are supported by ab initio calculations based on the non-dipole time-dependent Schrödinger equation. Using a self-referenced attosecond photoelectron interferometry on helium atoms, the electron subcycle motion along the light propagation direction is observed in the 15 pm range. A time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions is also revealed.
doi_str_mv 10.1038/s41566-023-01349-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3033748227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033748227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cfd69a6d71712b59beffa3ae405a7bf442ddd560bfd204abe3d947a9172d02c63</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhYMoOI6-gKuC62iSP22a5TB4gwE3ug5pk2iHTlKTjjB9eqMV3bk6Z3Eu8CF0Sck1JVDfJE7LqsKEASYUuMTTEVpQkQ2vJRz_-ro8RWcpbQkpQTK2QGI1jiHZNniDo02h_7Cm8MFj0w2ht8XwFsbQBd9NesxSmIPXu65N5-jE6T7Zix9dope72-f1A9483T-uVxvcApUjbp2ppK6MoIKyppSNdU6DtpyUWjSOc2aMKSvSOMMI140FI7nQkgpmCGsrWKKreXeI4X1v06i2YR99vlRAAASvGRM5xeZUG0NK0To1xG6n40FRor4AqRmQyoDUNyA15RLMpZTD_tXGv-l_Wp-pfmp7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033748227</pqid></control><display><type>article</type><title>Attosecond-resolved non-dipole photoionization dynamics</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Jintai ; Han, Meng ; Liao, Yijie ; Ji, Jia-bao ; Leung, Chung Sum ; Jiang, Wei-Chao ; Ueda, Kiyoshi ; Zhou, Yueming ; Lu, Peixiang ; Wörner, Hans Jakob</creator><creatorcontrib>Liang, Jintai ; Han, Meng ; Liao, Yijie ; Ji, Jia-bao ; Leung, Chung Sum ; Jiang, Wei-Chao ; Ueda, Kiyoshi ; Zhou, Yueming ; Lu, Peixiang ; Wörner, Hans Jakob</creatorcontrib><description>Light–matter interactions are usually described within the electric-dipole approximation, where the magnetic-field component and the spatial variation of the light electric field over the relevant electronic length scales are both ignored. Non-dipole effects in photoionization were revealed to be tiny from the infrared to the soft X-ray domains, and all non-dipole observations reported so far were limited to single-pulse, single-colour measurements. Here we advance attosecond time-resolved spectroscopy into the non-dipole interaction regime. Using a self-referenced attosecond photoelectron interferometry on helium atoms, we resolve the electron subcycle motion along the light propagation direction in the 15 pm range driven by the magnetic component of a near-infrared laser field. Furthermore, we measure a time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions by resolving the asymmetry of the photoelectron forward–backward yields with attosecond resolution. These fundamental findings are supported by ab initio calculations based on the non-dipole time-dependent Schrödinger equation. Using a self-referenced attosecond photoelectron interferometry on helium atoms, the electron subcycle motion along the light propagation direction is observed in the 15 pm range. A time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions is also revealed.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01349-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/584 ; 639/766/36/2796 ; Applied and Technical Physics ; Dipole interactions ; Electric fields ; Helium ; Helium atoms ; Infrared lasers ; Interferometry ; Mathematical analysis ; Photoelectrons ; Photoionization ; Physics ; Physics and Astronomy ; Quadrupoles ; Quantum Physics ; Schrodinger equation ; Soft x rays ; Spatial variations ; Spectroscopy ; Time dependence ; Time lag ; Time measurement</subject><ispartof>Nature photonics, 2024-04, Vol.18 (4), p.311-317</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cfd69a6d71712b59beffa3ae405a7bf442ddd560bfd204abe3d947a9172d02c63</citedby><cites>FETCH-LOGICAL-c319t-cfd69a6d71712b59beffa3ae405a7bf442ddd560bfd204abe3d947a9172d02c63</cites><orcidid>0000-0001-6952-6009 ; 0000-0001-8225-7544 ; 0000-0003-4372-0393 ; 0000-0002-8877-0872 ; 0000-0001-6993-8986 ; 0000-0002-1553-6399 ; 0000-0002-7300-7882 ; 0000-0001-7772-4566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01349-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01349-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liang, Jintai</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Liao, Yijie</creatorcontrib><creatorcontrib>Ji, Jia-bao</creatorcontrib><creatorcontrib>Leung, Chung Sum</creatorcontrib><creatorcontrib>Jiang, Wei-Chao</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>Zhou, Yueming</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><creatorcontrib>Wörner, Hans Jakob</creatorcontrib><title>Attosecond-resolved non-dipole photoionization dynamics</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Light–matter interactions are usually described within the electric-dipole approximation, where the magnetic-field component and the spatial variation of the light electric field over the relevant electronic length scales are both ignored. Non-dipole effects in photoionization were revealed to be tiny from the infrared to the soft X-ray domains, and all non-dipole observations reported so far were limited to single-pulse, single-colour measurements. Here we advance attosecond time-resolved spectroscopy into the non-dipole interaction regime. Using a self-referenced attosecond photoelectron interferometry on helium atoms, we resolve the electron subcycle motion along the light propagation direction in the 15 pm range driven by the magnetic component of a near-infrared laser field. Furthermore, we measure a time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions by resolving the asymmetry of the photoelectron forward–backward yields with attosecond resolution. These fundamental findings are supported by ab initio calculations based on the non-dipole time-dependent Schrödinger equation. Using a self-referenced attosecond photoelectron interferometry on helium atoms, the electron subcycle motion along the light propagation direction is observed in the 15 pm range. A time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions is also revealed.</description><subject>639/624/400/584</subject><subject>639/766/36/2796</subject><subject>Applied and Technical Physics</subject><subject>Dipole interactions</subject><subject>Electric fields</subject><subject>Helium</subject><subject>Helium atoms</subject><subject>Infrared lasers</subject><subject>Interferometry</subject><subject>Mathematical analysis</subject><subject>Photoelectrons</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadrupoles</subject><subject>Quantum Physics</subject><subject>Schrodinger equation</subject><subject>Soft x rays</subject><subject>Spatial variations</subject><subject>Spectroscopy</subject><subject>Time dependence</subject><subject>Time lag</subject><subject>Time measurement</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAYhYMoOI6-gKuC62iSP22a5TB4gwE3ug5pk2iHTlKTjjB9eqMV3bk6Z3Eu8CF0Sck1JVDfJE7LqsKEASYUuMTTEVpQkQ2vJRz_-ro8RWcpbQkpQTK2QGI1jiHZNniDo02h_7Cm8MFj0w2ht8XwFsbQBd9NesxSmIPXu65N5-jE6T7Zix9dope72-f1A9483T-uVxvcApUjbp2ppK6MoIKyppSNdU6DtpyUWjSOc2aMKSvSOMMI140FI7nQkgpmCGsrWKKreXeI4X1v06i2YR99vlRAAASvGRM5xeZUG0NK0To1xG6n40FRor4AqRmQyoDUNyA15RLMpZTD_tXGv-l_Wp-pfmp7</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liang, Jintai</creator><creator>Han, Meng</creator><creator>Liao, Yijie</creator><creator>Ji, Jia-bao</creator><creator>Leung, Chung Sum</creator><creator>Jiang, Wei-Chao</creator><creator>Ueda, Kiyoshi</creator><creator>Zhou, Yueming</creator><creator>Lu, Peixiang</creator><creator>Wörner, Hans Jakob</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6952-6009</orcidid><orcidid>https://orcid.org/0000-0001-8225-7544</orcidid><orcidid>https://orcid.org/0000-0003-4372-0393</orcidid><orcidid>https://orcid.org/0000-0002-8877-0872</orcidid><orcidid>https://orcid.org/0000-0001-6993-8986</orcidid><orcidid>https://orcid.org/0000-0002-1553-6399</orcidid><orcidid>https://orcid.org/0000-0002-7300-7882</orcidid><orcidid>https://orcid.org/0000-0001-7772-4566</orcidid></search><sort><creationdate>20240401</creationdate><title>Attosecond-resolved non-dipole photoionization dynamics</title><author>Liang, Jintai ; Han, Meng ; Liao, Yijie ; Ji, Jia-bao ; Leung, Chung Sum ; Jiang, Wei-Chao ; Ueda, Kiyoshi ; Zhou, Yueming ; Lu, Peixiang ; Wörner, Hans Jakob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cfd69a6d71712b59beffa3ae405a7bf442ddd560bfd204abe3d947a9172d02c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624/400/584</topic><topic>639/766/36/2796</topic><topic>Applied and Technical Physics</topic><topic>Dipole interactions</topic><topic>Electric fields</topic><topic>Helium</topic><topic>Helium atoms</topic><topic>Infrared lasers</topic><topic>Interferometry</topic><topic>Mathematical analysis</topic><topic>Photoelectrons</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadrupoles</topic><topic>Quantum Physics</topic><topic>Schrodinger equation</topic><topic>Soft x rays</topic><topic>Spatial variations</topic><topic>Spectroscopy</topic><topic>Time dependence</topic><topic>Time lag</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jintai</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Liao, Yijie</creatorcontrib><creatorcontrib>Ji, Jia-bao</creatorcontrib><creatorcontrib>Leung, Chung Sum</creatorcontrib><creatorcontrib>Jiang, Wei-Chao</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>Zhou, Yueming</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><creatorcontrib>Wörner, Hans Jakob</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jintai</au><au>Han, Meng</au><au>Liao, Yijie</au><au>Ji, Jia-bao</au><au>Leung, Chung Sum</au><au>Jiang, Wei-Chao</au><au>Ueda, Kiyoshi</au><au>Zhou, Yueming</au><au>Lu, Peixiang</au><au>Wörner, Hans Jakob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attosecond-resolved non-dipole photoionization dynamics</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><spage>311</spage><epage>317</epage><pages>311-317</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Light–matter interactions are usually described within the electric-dipole approximation, where the magnetic-field component and the spatial variation of the light electric field over the relevant electronic length scales are both ignored. Non-dipole effects in photoionization were revealed to be tiny from the infrared to the soft X-ray domains, and all non-dipole observations reported so far were limited to single-pulse, single-colour measurements. Here we advance attosecond time-resolved spectroscopy into the non-dipole interaction regime. Using a self-referenced attosecond photoelectron interferometry on helium atoms, we resolve the electron subcycle motion along the light propagation direction in the 15 pm range driven by the magnetic component of a near-infrared laser field. Furthermore, we measure a time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions by resolving the asymmetry of the photoelectron forward–backward yields with attosecond resolution. These fundamental findings are supported by ab initio calculations based on the non-dipole time-dependent Schrödinger equation. Using a self-referenced attosecond photoelectron interferometry on helium atoms, the electron subcycle motion along the light propagation direction is observed in the 15 pm range. A time delay of 15 ± 10 as between the electric-dipole and electric-quadrupole transitions is also revealed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01349-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6952-6009</orcidid><orcidid>https://orcid.org/0000-0001-8225-7544</orcidid><orcidid>https://orcid.org/0000-0003-4372-0393</orcidid><orcidid>https://orcid.org/0000-0002-8877-0872</orcidid><orcidid>https://orcid.org/0000-0001-6993-8986</orcidid><orcidid>https://orcid.org/0000-0002-1553-6399</orcidid><orcidid>https://orcid.org/0000-0002-7300-7882</orcidid><orcidid>https://orcid.org/0000-0001-7772-4566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2024-04, Vol.18 (4), p.311-317
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_3033748227
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/400/584
639/766/36/2796
Applied and Technical Physics
Dipole interactions
Electric fields
Helium
Helium atoms
Infrared lasers
Interferometry
Mathematical analysis
Photoelectrons
Photoionization
Physics
Physics and Astronomy
Quadrupoles
Quantum Physics
Schrodinger equation
Soft x rays
Spatial variations
Spectroscopy
Time dependence
Time lag
Time measurement
title Attosecond-resolved non-dipole photoionization dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attosecond-resolved%20non-dipole%20photoionization%20dynamics&rft.jtitle=Nature%20photonics&rft.au=Liang,%20Jintai&rft.date=2024-04-01&rft.volume=18&rft.issue=4&rft.spage=311&rft.epage=317&rft.pages=311-317&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01349-z&rft_dat=%3Cproquest_cross%3E3033748227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033748227&rft_id=info:pmid/&rfr_iscdi=true