Deriving Compact QUBO Models via Multilevel Constraint Transformation

With the advances in customized hardware for quantum annealing and digital/CMOS Annealing, Quadratic Unconstrained Binary Optimization (QUBO) models have received growing attention in the optimization literature. Motivated by an existing general-purpose approach that derives QUBO models from binary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Pichugina, Oksana, Tan, Yingcong, Beck, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pichugina, Oksana
Tan, Yingcong
Beck, Christopher
description With the advances in customized hardware for quantum annealing and digital/CMOS Annealing, Quadratic Unconstrained Binary Optimization (QUBO) models have received growing attention in the optimization literature. Motivated by an existing general-purpose approach that derives QUBO models from binary linear programs (BLP), we propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables. We formulate sufficient conditions for the existence of a compact QUBO formulation (i.e., in the original BLP decision space) in terms of constraint levelness and demonstrate the flexibility and applicability of MLCTS on synthetic examples and several well-known combinatorial optimization problems, i.e., the Maximum 2-Satisfiability Problem, the Linear Ordering Problem, the Community Detection Problem, and the Maximum Independence Set Problem. For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver. The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3033746905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033746905</sourcerecordid><originalsourceid>FETCH-proquest_journals_30337469053</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhbXPaV0zo4tEoGcZNWMyN9s3_f156Ad0eg_vsyIRBzgkx5TzDYkRe8YYz3IuBESkvCivZ23ftHDDKJ-BPprznVbupQzSWUtaTSZoo2ZlFmIxeKltoLWXFjvnBxm0szuy7qRBFf-6JftrWRe3ZPTuMykMbe8mb5fVAgPI0-zEBPynvmkGOvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033746905</pqid></control><display><type>article</type><title>Deriving Compact QUBO Models via Multilevel Constraint Transformation</title><source>Free E- Journals</source><creator>Pichugina, Oksana ; Tan, Yingcong ; Beck, Christopher</creator><creatorcontrib>Pichugina, Oksana ; Tan, Yingcong ; Beck, Christopher</creatorcontrib><description>With the advances in customized hardware for quantum annealing and digital/CMOS Annealing, Quadratic Unconstrained Binary Optimization (QUBO) models have received growing attention in the optimization literature. Motivated by an existing general-purpose approach that derives QUBO models from binary linear programs (BLP), we propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables. We formulate sufficient conditions for the existence of a compact QUBO formulation (i.e., in the original BLP decision space) in terms of constraint levelness and demonstrate the flexibility and applicability of MLCTS on synthetic examples and several well-known combinatorial optimization problems, i.e., the Maximum 2-Satisfiability Problem, the Linear Ordering Problem, the Community Detection Problem, and the Maximum Independence Set Problem. For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver. The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Constraint modelling ; Hardware ; Optimization ; Solvers</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Pichugina, Oksana</creatorcontrib><creatorcontrib>Tan, Yingcong</creatorcontrib><creatorcontrib>Beck, Christopher</creatorcontrib><title>Deriving Compact QUBO Models via Multilevel Constraint Transformation</title><title>arXiv.org</title><description>With the advances in customized hardware for quantum annealing and digital/CMOS Annealing, Quadratic Unconstrained Binary Optimization (QUBO) models have received growing attention in the optimization literature. Motivated by an existing general-purpose approach that derives QUBO models from binary linear programs (BLP), we propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables. We formulate sufficient conditions for the existence of a compact QUBO formulation (i.e., in the original BLP decision space) in terms of constraint levelness and demonstrate the flexibility and applicability of MLCTS on synthetic examples and several well-known combinatorial optimization problems, i.e., the Maximum 2-Satisfiability Problem, the Linear Ordering Problem, the Community Detection Problem, and the Maximum Independence Set Problem. For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver. The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.</description><subject>Combinatorial analysis</subject><subject>Constraint modelling</subject><subject>Hardware</subject><subject>Optimization</subject><subject>Solvers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhbXPaV0zo4tEoGcZNWMyN9s3_f156Ad0eg_vsyIRBzgkx5TzDYkRe8YYz3IuBESkvCivZ23ftHDDKJ-BPprznVbupQzSWUtaTSZoo2ZlFmIxeKltoLWXFjvnBxm0szuy7qRBFf-6JftrWRe3ZPTuMykMbe8mb5fVAgPI0-zEBPynvmkGOvM</recordid><startdate>20240404</startdate><enddate>20240404</enddate><creator>Pichugina, Oksana</creator><creator>Tan, Yingcong</creator><creator>Beck, Christopher</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240404</creationdate><title>Deriving Compact QUBO Models via Multilevel Constraint Transformation</title><author>Pichugina, Oksana ; Tan, Yingcong ; Beck, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30337469053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Constraint modelling</topic><topic>Hardware</topic><topic>Optimization</topic><topic>Solvers</topic><toplevel>online_resources</toplevel><creatorcontrib>Pichugina, Oksana</creatorcontrib><creatorcontrib>Tan, Yingcong</creatorcontrib><creatorcontrib>Beck, Christopher</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pichugina, Oksana</au><au>Tan, Yingcong</au><au>Beck, Christopher</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deriving Compact QUBO Models via Multilevel Constraint Transformation</atitle><jtitle>arXiv.org</jtitle><date>2024-04-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the advances in customized hardware for quantum annealing and digital/CMOS Annealing, Quadratic Unconstrained Binary Optimization (QUBO) models have received growing attention in the optimization literature. Motivated by an existing general-purpose approach that derives QUBO models from binary linear programs (BLP), we propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables. We formulate sufficient conditions for the existence of a compact QUBO formulation (i.e., in the original BLP decision space) in terms of constraint levelness and demonstrate the flexibility and applicability of MLCTS on synthetic examples and several well-known combinatorial optimization problems, i.e., the Maximum 2-Satisfiability Problem, the Linear Ordering Problem, the Community Detection Problem, and the Maximum Independence Set Problem. For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver. The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3033746905
source Free E- Journals
subjects Combinatorial analysis
Constraint modelling
Hardware
Optimization
Solvers
title Deriving Compact QUBO Models via Multilevel Constraint Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deriving%20Compact%20QUBO%20Models%20via%20Multilevel%20Constraint%20Transformation&rft.jtitle=arXiv.org&rft.au=Pichugina,%20Oksana&rft.date=2024-04-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3033746905%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033746905&rft_id=info:pmid/&rfr_iscdi=true