PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments
Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categorie...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ding, Kairui Chen, Boyuan Wu, Ruihai Li, Yuyang Zhang, Zongzheng Huan-ang Gao Li, Siqi Zhou, Guyue Zhu, Yixin Dong, Hao Zhao, Hao |
description | Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework incorporating a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3033746226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033746226</sourcerecordid><originalsourceid>FETCH-proquest_journals_30337462263</originalsourceid><addsrcrecordid>eNqNyksKwjAUheEgCBbtHgKOAzHpQ5z5qDrTgeKwxPZWWupNzW27fou6AEcHzv-NmKe0XohloNSE-USVlFJFsQpD7bHb2cG6KKzLV_yKZQ-OTM2_j8EMxMYQ5HxQ4uAMNSU--ND47kOBn-4VZC1xgzlPsC-dxSdgSzM2LkxN4P92yub75LI9isbZVwfUppXtHA4p1VLrOIiUivR_6g0W-kEy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033746226</pqid></control><display><type>article</type><title>PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments</title><source>Free E- Journals</source><creator>Ding, Kairui ; Chen, Boyuan ; Wu, Ruihai ; Li, Yuyang ; Zhang, Zongzheng ; Huan-ang Gao ; Li, Siqi ; Zhou, Guyue ; Zhu, Yixin ; Dong, Hao ; Zhao, Hao</creator><creatorcontrib>Ding, Kairui ; Chen, Boyuan ; Wu, Ruihai ; Li, Yuyang ; Zhang, Zongzheng ; Huan-ang Gao ; Li, Siqi ; Zhou, Guyue ; Zhu, Yixin ; Dong, Hao ; Zhao, Hao</creatorcontrib><description>Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework incorporating a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fingers ; Grasping (robotics) ; Grippers ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Ding, Kairui</creatorcontrib><creatorcontrib>Chen, Boyuan</creatorcontrib><creatorcontrib>Wu, Ruihai</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Zhang, Zongzheng</creatorcontrib><creatorcontrib>Huan-ang Gao</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Zhou, Guyue</creatorcontrib><creatorcontrib>Zhu, Yixin</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><title>PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments</title><title>arXiv.org</title><description>Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework incorporating a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.</description><subject>Fingers</subject><subject>Grasping (robotics)</subject><subject>Grippers</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAUheEgCBbtHgKOAzHpQ5z5qDrTgeKwxPZWWupNzW27fou6AEcHzv-NmKe0XohloNSE-USVlFJFsQpD7bHb2cG6KKzLV_yKZQ-OTM2_j8EMxMYQ5HxQ4uAMNSU--ND47kOBn-4VZC1xgzlPsC-dxSdgSzM2LkxN4P92yub75LI9isbZVwfUppXtHA4p1VLrOIiUivR_6g0W-kEy</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Ding, Kairui</creator><creator>Chen, Boyuan</creator><creator>Wu, Ruihai</creator><creator>Li, Yuyang</creator><creator>Zhang, Zongzheng</creator><creator>Huan-ang Gao</creator><creator>Li, Siqi</creator><creator>Zhou, Guyue</creator><creator>Zhu, Yixin</creator><creator>Dong, Hao</creator><creator>Zhao, Hao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240823</creationdate><title>PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments</title><author>Ding, Kairui ; Chen, Boyuan ; Wu, Ruihai ; Li, Yuyang ; Zhang, Zongzheng ; Huan-ang Gao ; Li, Siqi ; Zhou, Guyue ; Zhu, Yixin ; Dong, Hao ; Zhao, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30337462263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fingers</topic><topic>Grasping (robotics)</topic><topic>Grippers</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Kairui</creatorcontrib><creatorcontrib>Chen, Boyuan</creatorcontrib><creatorcontrib>Wu, Ruihai</creatorcontrib><creatorcontrib>Li, Yuyang</creatorcontrib><creatorcontrib>Zhang, Zongzheng</creatorcontrib><creatorcontrib>Huan-ang Gao</creatorcontrib><creatorcontrib>Li, Siqi</creatorcontrib><creatorcontrib>Zhou, Guyue</creatorcontrib><creatorcontrib>Zhu, Yixin</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Kairui</au><au>Chen, Boyuan</au><au>Wu, Ruihai</au><au>Li, Yuyang</au><au>Zhang, Zongzheng</au><au>Huan-ang Gao</au><au>Li, Siqi</au><au>Zhou, Guyue</au><au>Zhu, Yixin</au><au>Dong, Hao</au><au>Zhao, Hao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments</atitle><jtitle>arXiv.org</jtitle><date>2024-08-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework incorporating a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3033746226 |
source | Free E- Journals |
subjects | Fingers Grasping (robotics) Grippers Robustness (mathematics) |
title | PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PreAfford:%20Universal%20Affordance-Based%20Pre-Grasping%20for%20Diverse%20Objects%20and%20Environments&rft.jtitle=arXiv.org&rft.au=Ding,%20Kairui&rft.date=2024-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3033746226%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033746226&rft_id=info:pmid/&rfr_iscdi=true |