Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach

In 5 G small cell networks, edge caching is a key technique to alleviate the backhaul burden by caching user desired contents at network edges such as small base stations (SBSs). However, due to storage space limitation and diverse user preference patterns, a single SBS is unable to cache all the us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on mobile computing 2024-05, Vol.23 (5), p.1-13
Hauptverfasser: Zhou, Xiaobo, Ke, Zhihui, Qiu, Tie
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 5
container_start_page 1
container_title IEEE transactions on mobile computing
container_volume 23
creator Zhou, Xiaobo
Ke, Zhihui
Qiu, Tie
description In 5 G small cell networks, edge caching is a key technique to alleviate the backhaul burden by caching user desired contents at network edges such as small base stations (SBSs). However, due to storage space limitation and diverse user preference patterns, a single SBS is unable to cache all the user desired contents and thus leading to low caching efficiency. In this paper, we propose a recommendation-driven multi-cell cooperative caching strategy to improve the caching efficiency. The idea is to aggregate the storage spaces of multiple SBSs into a large shared resource pool, and guide users to access cached contents by content recommendation. First, we formulate the joint cooperative caching and recommendation problem as a multi-agent multi-armed bandit (MAMAB) problem with the aim of minimizing the average download latency. Then, we propose a multi-agent reinforcement learning (MARL)-based algorithm, MARL-JCR, to solve the problem in a fully distributed manner with limited information exchange among the agents. We also develop a modified combinatorial upper confidence bound algorithm to reduce each agent's decision space to reduce computational complexity. The experiment results evaluated on the MovieLens dataset show MARL-JCR decreases the average download latency by up to 60% as compared with the state-of-the-art solutions.
doi_str_mv 10.1109/TMC.2023.3297213
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3033621113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10189095</ieee_id><sourcerecordid>3033621113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4909a67210ef16c57989e25240d4395de451c7d8e74bd0f12d353395aa51f32c3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6xfXESs0XhU2qFVJXZMs6lpErs4KSV-Pc4agcmn3XPe3d6CLlldMEYlQ-bVbnglMMCuMw4gzMyY0LkMU1Tej7VkMaMA1ySq2HYUcpyKbMZMWs0ruvQVnpsnI2ffHNAG6327djEJbZtVDrXow_dA0alNt-N3T5GxYkotmjHaI2NrZ032E2_JWpvAxUVfe9dSFyTi1q3A96c3jn5fHnelG_x8uP1vSyWseGJGONEUqnTcDvFmqVGZDKXyAVPaJWAFBUmgpmsyjFLvipaM16BgNDQWrAauIE5uT_ODWt_9jiMauf23oaVCihAyhljECh6pIx3w-CxVr1vOu1_FaNqUqmCSjWpVCeVIXJ3jDSI-A8PDqkU8AdJJ265</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>3033621113</pqid></control><display><type>magazinearticle</type><title>Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Xiaobo ; Ke, Zhihui ; Qiu, Tie</creator><creatorcontrib>Zhou, Xiaobo ; Ke, Zhihui ; Qiu, Tie</creatorcontrib><description>In 5 G small cell networks, edge caching is a key technique to alleviate the backhaul burden by caching user desired contents at network edges such as small base stations (SBSs). However, due to storage space limitation and diverse user preference patterns, a single SBS is unable to cache all the user desired contents and thus leading to low caching efficiency. In this paper, we propose a recommendation-driven multi-cell cooperative caching strategy to improve the caching efficiency. The idea is to aggregate the storage spaces of multiple SBSs into a large shared resource pool, and guide users to access cached contents by content recommendation. First, we formulate the joint cooperative caching and recommendation problem as a multi-agent multi-armed bandit (MAMAB) problem with the aim of minimizing the average download latency. Then, we propose a multi-agent reinforcement learning (MARL)-based algorithm, MARL-JCR, to solve the problem in a fully distributed manner with limited information exchange among the agents. We also develop a modified combinatorial upper confidence bound algorithm to reduce each agent's decision space to reduce computational complexity. The experiment results evaluated on the MovieLens dataset show MARL-JCR decreases the average download latency by up to 60% as compared with the state-of-the-art solutions.</description><identifier>ISSN: 1536-1233</identifier><identifier>EISSN: 1558-0660</identifier><identifier>DOI: 10.1109/TMC.2023.3297213</identifier><identifier>CODEN: ITMCCJ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; Caching ; Collaboration ; Combinatorial analysis ; Cooperative caching ; Cooperative systems ; Downloading ; Joint caching and recommendation ; Machine learning ; Mobile computing ; mobile edge caching ; multi-agent reinforcement learning ; multi-cell cooperative networks ; Multiagent systems ; Network latency ; Optimization ; Radio equipment ; Recommender systems ; Reinforcement learning</subject><ispartof>IEEE transactions on mobile computing, 2024-05, Vol.23 (5), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4909a67210ef16c57989e25240d4395de451c7d8e74bd0f12d353395aa51f32c3</cites><orcidid>0000-0003-2324-2523 ; 0000-0002-7772-458X ; 0009-0002-4042-7044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10189095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,792,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10189095$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Ke, Zhihui</creatorcontrib><creatorcontrib>Qiu, Tie</creatorcontrib><title>Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach</title><title>IEEE transactions on mobile computing</title><addtitle>TMC</addtitle><description>In 5 G small cell networks, edge caching is a key technique to alleviate the backhaul burden by caching user desired contents at network edges such as small base stations (SBSs). However, due to storage space limitation and diverse user preference patterns, a single SBS is unable to cache all the user desired contents and thus leading to low caching efficiency. In this paper, we propose a recommendation-driven multi-cell cooperative caching strategy to improve the caching efficiency. The idea is to aggregate the storage spaces of multiple SBSs into a large shared resource pool, and guide users to access cached contents by content recommendation. First, we formulate the joint cooperative caching and recommendation problem as a multi-agent multi-armed bandit (MAMAB) problem with the aim of minimizing the average download latency. Then, we propose a multi-agent reinforcement learning (MARL)-based algorithm, MARL-JCR, to solve the problem in a fully distributed manner with limited information exchange among the agents. We also develop a modified combinatorial upper confidence bound algorithm to reduce each agent's decision space to reduce computational complexity. The experiment results evaluated on the MovieLens dataset show MARL-JCR decreases the average download latency by up to 60% as compared with the state-of-the-art solutions.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Collaboration</subject><subject>Combinatorial analysis</subject><subject>Cooperative caching</subject><subject>Cooperative systems</subject><subject>Downloading</subject><subject>Joint caching and recommendation</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>mobile edge caching</subject><subject>multi-agent reinforcement learning</subject><subject>multi-cell cooperative networks</subject><subject>Multiagent systems</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Radio equipment</subject><subject>Recommender systems</subject><subject>Reinforcement learning</subject><issn>1536-1233</issn><issn>1558-0660</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk6xfXESs0XhU2qFVJXZMs6lpErs4KSV-Pc4agcmn3XPe3d6CLlldMEYlQ-bVbnglMMCuMw4gzMyY0LkMU1Tej7VkMaMA1ySq2HYUcpyKbMZMWs0ruvQVnpsnI2ffHNAG6327djEJbZtVDrXow_dA0alNt-N3T5GxYkotmjHaI2NrZ032E2_JWpvAxUVfe9dSFyTi1q3A96c3jn5fHnelG_x8uP1vSyWseGJGONEUqnTcDvFmqVGZDKXyAVPaJWAFBUmgpmsyjFLvipaM16BgNDQWrAauIE5uT_ODWt_9jiMauf23oaVCihAyhljECh6pIx3w-CxVr1vOu1_FaNqUqmCSjWpVCeVIXJ3jDSI-A8PDqkU8AdJJ265</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhou, Xiaobo</creator><creator>Ke, Zhihui</creator><creator>Qiu, Tie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2324-2523</orcidid><orcidid>https://orcid.org/0000-0002-7772-458X</orcidid><orcidid>https://orcid.org/0009-0002-4042-7044</orcidid></search><sort><creationdate>20240501</creationdate><title>Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach</title><author>Zhou, Xiaobo ; Ke, Zhihui ; Qiu, Tie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4909a67210ef16c57989e25240d4395de451c7d8e74bd0f12d353395aa51f32c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Collaboration</topic><topic>Combinatorial analysis</topic><topic>Cooperative caching</topic><topic>Cooperative systems</topic><topic>Downloading</topic><topic>Joint caching and recommendation</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>mobile edge caching</topic><topic>multi-agent reinforcement learning</topic><topic>multi-cell cooperative networks</topic><topic>Multiagent systems</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Radio equipment</topic><topic>Recommender systems</topic><topic>Reinforcement learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Ke, Zhihui</creatorcontrib><creatorcontrib>Qiu, Tie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Xiaobo</au><au>Ke, Zhihui</au><au>Qiu, Tie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach</atitle><jtitle>IEEE transactions on mobile computing</jtitle><stitle>TMC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>23</volume><issue>5</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1536-1233</issn><eissn>1558-0660</eissn><coden>ITMCCJ</coden><abstract>In 5 G small cell networks, edge caching is a key technique to alleviate the backhaul burden by caching user desired contents at network edges such as small base stations (SBSs). However, due to storage space limitation and diverse user preference patterns, a single SBS is unable to cache all the user desired contents and thus leading to low caching efficiency. In this paper, we propose a recommendation-driven multi-cell cooperative caching strategy to improve the caching efficiency. The idea is to aggregate the storage spaces of multiple SBSs into a large shared resource pool, and guide users to access cached contents by content recommendation. First, we formulate the joint cooperative caching and recommendation problem as a multi-agent multi-armed bandit (MAMAB) problem with the aim of minimizing the average download latency. Then, we propose a multi-agent reinforcement learning (MARL)-based algorithm, MARL-JCR, to solve the problem in a fully distributed manner with limited information exchange among the agents. We also develop a modified combinatorial upper confidence bound algorithm to reduce each agent's decision space to reduce computational complexity. The experiment results evaluated on the MovieLens dataset show MARL-JCR decreases the average download latency by up to 60% as compared with the state-of-the-art solutions.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TMC.2023.3297213</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2324-2523</orcidid><orcidid>https://orcid.org/0000-0002-7772-458X</orcidid><orcidid>https://orcid.org/0009-0002-4042-7044</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1233
ispartof IEEE transactions on mobile computing, 2024-05, Vol.23 (5), p.1-13
issn 1536-1233
1558-0660
language eng
recordid cdi_proquest_journals_3033621113
source IEEE Electronic Library (IEL)
subjects Algorithms
Caching
Collaboration
Combinatorial analysis
Cooperative caching
Cooperative systems
Downloading
Joint caching and recommendation
Machine learning
Mobile computing
mobile edge caching
multi-agent reinforcement learning
multi-cell cooperative networks
Multiagent systems
Network latency
Optimization
Radio equipment
Recommender systems
Reinforcement learning
title Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommendation-Driven%20Multi-Cell%20Cooperative%20Caching:%20A%20Multi-Agent%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20transactions%20on%20mobile%20computing&rft.au=Zhou,%20Xiaobo&rft.date=2024-05-01&rft.volume=23&rft.issue=5&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1536-1233&rft.eissn=1558-0660&rft.coden=ITMCCJ&rft_id=info:doi/10.1109/TMC.2023.3297213&rft_dat=%3Cproquest_RIE%3E3033621113%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033621113&rft_id=info:pmid/&rft_ieee_id=10189095&rfr_iscdi=true