Uncertainty forecasting model for mountain flood based on Bayesian Deep Learning
Due to the characteristics of strong suddenness, high harmfulness, and frequent occurrence of mountain flood disasters in small watersheds, the accuracy and reliability of mountain flood forecasting are insufficient in small watersheds. This paper studies key theories and technologies, that is the u...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Wang, Songsong Xu, Ouguan |
description | Due to the characteristics of strong suddenness, high harmfulness, and frequent occurrence of mountain flood disasters in small watersheds, the accuracy and reliability of mountain flood forecasting are insufficient in small watersheds. This paper studies key theories and technologies, that is the uncertainty forecasting model based on hydrologic physical mechanism. We design the Bayesian Deep Learning (DL) forecasting models, it is suitable for the transfer of spatiotemporal factors caused by mountain floods to disaster probability. The models include Bayesian Linear and Bayesian Long Short-Term Memory (LSTM) model, we hope to achieve an acceptable balance between reliability (uncertainty confidence coverage) and accuracy (confidence interval width). Meanwhile, we extract effective information from multi-source and multi-dimensional hazard factors' big data. The experiment shows the differences between Bayesian DL models, the models have long-term probability forecasting ability at both, but Bayesian LSTM is superior to Bayesian Linear in terms of reliability, accuracy and computational consumption. |
doi_str_mv | 10.1109/ACCESS.2024.3384066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3033619356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10487902</ieee_id><doaj_id>oai_doaj_org_article_a306c8cf9fee4bcfb6cb96a5e4d01367</doaj_id><sourcerecordid>3033619356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-10f9c8672afd2d71a7b76bcd2a163cce149aaed308844191caca39d644ef673</originalsourceid><addsrcrecordid>eNpNUcFKAzEQXUTBUvsFeljw3JrsZLObY61VCwWF6jnMJpOypd3UZHvo37vtinQu83i892bgJck9ZxPOmXqazmbz1WqSsUxMAErBpLxKBhmXagw5yOsLfJuMYtywbsqOyotB8vndGAot1k17TJ0PZDC2dbNOd97S9sR06NCcBKnbem_TCiPZ1DfpMx4p1tikL0T7dEkYms54l9w43EYa_e1hsnqdf83ex8uPt8VsuhwbyFU75swpU8oiQ2czW3AsqkJWxmbIJRhDXChEssDKUgiuuEGDoKwUgpwsYJgs-lTrcaP3od5hOGqPtT4TPqw1hrY2W9IITJrSOOWIRGVcJU2lJOYkLONwznrss_bB_xwotnrjD6HpntfAACRXkMtOBb3KBB9jIPd_lTN96kH3PehTD_qvh8710LtqIrpwiLJQLINfEs2E3Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033619356</pqid></control><display><type>article</type><title>Uncertainty forecasting model for mountain flood based on Bayesian Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Songsong ; Xu, Ouguan</creator><creatorcontrib>Wang, Songsong ; Xu, Ouguan</creatorcontrib><description>Due to the characteristics of strong suddenness, high harmfulness, and frequent occurrence of mountain flood disasters in small watersheds, the accuracy and reliability of mountain flood forecasting are insufficient in small watersheds. This paper studies key theories and technologies, that is the uncertainty forecasting model based on hydrologic physical mechanism. We design the Bayesian Deep Learning (DL) forecasting models, it is suitable for the transfer of spatiotemporal factors caused by mountain floods to disaster probability. The models include Bayesian Linear and Bayesian Long Short-Term Memory (LSTM) model, we hope to achieve an acceptable balance between reliability (uncertainty confidence coverage) and accuracy (confidence interval width). Meanwhile, we extract effective information from multi-source and multi-dimensional hazard factors' big data. The experiment shows the differences between Bayesian DL models, the models have long-term probability forecasting ability at both, but Bayesian LSTM is superior to Bayesian Linear in terms of reliability, accuracy and computational consumption.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3384066</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Bayes methods ; Bayesian analysis ; Bayesian deep learning ; Computational modeling ; Confidence intervals ; Data models ; Deep learning ; Flood forecasting ; Floods ; Forecasting ; Machine learning ; Mathematical models ; Mountain flood forecasting ; Mountains ; Multi-source Data ; Predictive models ; Reliability ; small watershed ; Statistical analysis ; Uncertainty ; uncertainty forecasting ; Water resources ; Watersheds ; Weather forecasting</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-10f9c8672afd2d71a7b76bcd2a163cce149aaed308844191caca39d644ef673</cites><orcidid>0000-0002-3273-6317 ; 0000-0002-1234-2484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10487902$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Wang, Songsong</creatorcontrib><creatorcontrib>Xu, Ouguan</creatorcontrib><title>Uncertainty forecasting model for mountain flood based on Bayesian Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the characteristics of strong suddenness, high harmfulness, and frequent occurrence of mountain flood disasters in small watersheds, the accuracy and reliability of mountain flood forecasting are insufficient in small watersheds. This paper studies key theories and technologies, that is the uncertainty forecasting model based on hydrologic physical mechanism. We design the Bayesian Deep Learning (DL) forecasting models, it is suitable for the transfer of spatiotemporal factors caused by mountain floods to disaster probability. The models include Bayesian Linear and Bayesian Long Short-Term Memory (LSTM) model, we hope to achieve an acceptable balance between reliability (uncertainty confidence coverage) and accuracy (confidence interval width). Meanwhile, we extract effective information from multi-source and multi-dimensional hazard factors' big data. The experiment shows the differences between Bayesian DL models, the models have long-term probability forecasting ability at both, but Bayesian LSTM is superior to Bayesian Linear in terms of reliability, accuracy and computational consumption.</description><subject>Accuracy</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian deep learning</subject><subject>Computational modeling</subject><subject>Confidence intervals</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Flood forecasting</subject><subject>Floods</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mountain flood forecasting</subject><subject>Mountains</subject><subject>Multi-source Data</subject><subject>Predictive models</subject><subject>Reliability</subject><subject>small watershed</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>uncertainty forecasting</subject><subject>Water resources</subject><subject>Watersheds</subject><subject>Weather forecasting</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKAzEQXUTBUvsFeljw3JrsZLObY61VCwWF6jnMJpOypd3UZHvo37vtinQu83i892bgJck9ZxPOmXqazmbz1WqSsUxMAErBpLxKBhmXagw5yOsLfJuMYtywbsqOyotB8vndGAot1k17TJ0PZDC2dbNOd97S9sR06NCcBKnbem_TCiPZ1DfpMx4p1tikL0T7dEkYms54l9w43EYa_e1hsnqdf83ex8uPt8VsuhwbyFU75swpU8oiQ2czW3AsqkJWxmbIJRhDXChEssDKUgiuuEGDoKwUgpwsYJgs-lTrcaP3od5hOGqPtT4TPqw1hrY2W9IITJrSOOWIRGVcJU2lJOYkLONwznrss_bB_xwotnrjD6HpntfAACRXkMtOBb3KBB9jIPd_lTN96kH3PehTD_qvh8710LtqIrpwiLJQLINfEs2E3Q</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Wang, Songsong</creator><creator>Xu, Ouguan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3273-6317</orcidid><orcidid>https://orcid.org/0000-0002-1234-2484</orcidid></search><sort><creationdate>20240101</creationdate><title>Uncertainty forecasting model for mountain flood based on Bayesian Deep Learning</title><author>Wang, Songsong ; Xu, Ouguan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-10f9c8672afd2d71a7b76bcd2a163cce149aaed308844191caca39d644ef673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian deep learning</topic><topic>Computational modeling</topic><topic>Confidence intervals</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Flood forecasting</topic><topic>Floods</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mountain flood forecasting</topic><topic>Mountains</topic><topic>Multi-source Data</topic><topic>Predictive models</topic><topic>Reliability</topic><topic>small watershed</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>uncertainty forecasting</topic><topic>Water resources</topic><topic>Watersheds</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Songsong</creatorcontrib><creatorcontrib>Xu, Ouguan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Songsong</au><au>Xu, Ouguan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty forecasting model for mountain flood based on Bayesian Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the characteristics of strong suddenness, high harmfulness, and frequent occurrence of mountain flood disasters in small watersheds, the accuracy and reliability of mountain flood forecasting are insufficient in small watersheds. This paper studies key theories and technologies, that is the uncertainty forecasting model based on hydrologic physical mechanism. We design the Bayesian Deep Learning (DL) forecasting models, it is suitable for the transfer of spatiotemporal factors caused by mountain floods to disaster probability. The models include Bayesian Linear and Bayesian Long Short-Term Memory (LSTM) model, we hope to achieve an acceptable balance between reliability (uncertainty confidence coverage) and accuracy (confidence interval width). Meanwhile, we extract effective information from multi-source and multi-dimensional hazard factors' big data. The experiment shows the differences between Bayesian DL models, the models have long-term probability forecasting ability at both, but Bayesian LSTM is superior to Bayesian Linear in terms of reliability, accuracy and computational consumption.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3384066</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3273-6317</orcidid><orcidid>https://orcid.org/0000-0002-1234-2484</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3033619356 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Bayes methods Bayesian analysis Bayesian deep learning Computational modeling Confidence intervals Data models Deep learning Flood forecasting Floods Forecasting Machine learning Mathematical models Mountain flood forecasting Mountains Multi-source Data Predictive models Reliability small watershed Statistical analysis Uncertainty uncertainty forecasting Water resources Watersheds Weather forecasting |
title | Uncertainty forecasting model for mountain flood based on Bayesian Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20forecasting%20model%20for%20mountain%20flood%20based%20on%20Bayesian%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Wang,%20Songsong&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3384066&rft_dat=%3Cproquest_cross%3E3033619356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033619356&rft_id=info:pmid/&rft_ieee_id=10487902&rft_doaj_id=oai_doaj_org_article_a306c8cf9fee4bcfb6cb96a5e4d01367&rfr_iscdi=true |