Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control

This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.47594-47606
Hauptverfasser: Hung, Nguyen Huu, Le, Tien-Loc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47606
container_issue
container_start_page 47594
container_title IEEE access
container_volume 12
creator Hung, Nguyen Huu
Le, Tien-Loc
description This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.
doi_str_mv 10.1109/ACCESS.2024.3379299
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3033619225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475321</ieee_id><doaj_id>oai_doaj_org_article_f57ed048b16148c29d3878706731656f</doaj_id><sourcerecordid>3033619225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2c1e0d2198683eb074c0bf8a9c34d450cdb541d9adaf2bc6a7cb2ef2cdfc50f33</originalsourceid><addsrcrecordid>eNpNkU1r3DAQhk1ooSHNL2gPgpy90YclWcet2XzAQg-bnIUsjRItXmkreQ_eX19vHUrmMsPwvu8wPFX1g-AVIVjdr7tus9utKKbNijGpqFJX1TUlQtWMM_Hl0_ytui1lj-dq5xWX15XZxHcTLTi0MyMMQxgB7aZo33OK4WzGkCJ6LSG-oZfpCDVF6zIdDjDmYNHD6Xye0K9sQkSbQ7pozYC2YHK8GLoUx5yG79VXb4YCtx_9pnp92Lx0T_X29-Nzt97WlnE11tQSwI4S1YqWQY9lY3HvW6Msa1zDsXU9b4hTxhlPeyuMtD0FT63zlmPP2E31vOS6ZPb6mMPB5EknE_S_Rcpv2uQx2AG05xIcbtqeCNK0lirHWtlKLCQjggs_Z90tWcec_pygjHqfTnn-rmiGGRNEUcpnFVtUNqdSMvj_VwnWFzR6QaMvaPQHmtn1c3EFAPjkaCRnlLC_WMeK6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033619225</pqid></control><display><type>article</type><title>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Hung, Nguyen Huu ; Le, Tien-Loc</creator><creatorcontrib>Hung, Nguyen Huu ; Le, Tien-Loc</creatorcontrib><description>This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3379299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; asymmetric membership function ; Asymmetry ; Brain ; Brain emotional learning control ; Brain modeling ; chaotic satellite system ; Control systems design ; Emotion recognition ; Fuzzy control ; Fuzzy systems ; Learning ; Learning systems ; Performance evaluation ; Robustness ; Satellites ; self-organizing algorithm ; Space vehicles ; Synchronism ; Synchronization ; type-2 fuzzy system ; Uncertainty</subject><ispartof>IEEE access, 2024, Vol.12, p.47594-47606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2c1e0d2198683eb074c0bf8a9c34d450cdb541d9adaf2bc6a7cb2ef2cdfc50f33</cites><orcidid>0000-0002-9849-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hung, Nguyen Huu</creatorcontrib><creatorcontrib>Le, Tien-Loc</creatorcontrib><title>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.</description><subject>Algorithms</subject><subject>asymmetric membership function</subject><subject>Asymmetry</subject><subject>Brain</subject><subject>Brain emotional learning control</subject><subject>Brain modeling</subject><subject>chaotic satellite system</subject><subject>Control systems design</subject><subject>Emotion recognition</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>Satellites</subject><subject>self-organizing algorithm</subject><subject>Space vehicles</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>type-2 fuzzy system</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1r3DAQhk1ooSHNL2gPgpy90YclWcet2XzAQg-bnIUsjRItXmkreQ_eX19vHUrmMsPwvu8wPFX1g-AVIVjdr7tus9utKKbNijGpqFJX1TUlQtWMM_Hl0_ytui1lj-dq5xWX15XZxHcTLTi0MyMMQxgB7aZo33OK4WzGkCJ6LSG-oZfpCDVF6zIdDjDmYNHD6Xye0K9sQkSbQ7pozYC2YHK8GLoUx5yG79VXb4YCtx_9pnp92Lx0T_X29-Nzt97WlnE11tQSwI4S1YqWQY9lY3HvW6Msa1zDsXU9b4hTxhlPeyuMtD0FT63zlmPP2E31vOS6ZPb6mMPB5EknE_S_Rcpv2uQx2AG05xIcbtqeCNK0lirHWtlKLCQjggs_Z90tWcec_pygjHqfTnn-rmiGGRNEUcpnFVtUNqdSMvj_VwnWFzR6QaMvaPQHmtn1c3EFAPjkaCRnlLC_WMeK6w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hung, Nguyen Huu</creator><creator>Le, Tien-Loc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9849-9297</orcidid></search><sort><creationdate>2024</creationdate><title>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</title><author>Hung, Nguyen Huu ; Le, Tien-Loc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2c1e0d2198683eb074c0bf8a9c34d450cdb541d9adaf2bc6a7cb2ef2cdfc50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>asymmetric membership function</topic><topic>Asymmetry</topic><topic>Brain</topic><topic>Brain emotional learning control</topic><topic>Brain modeling</topic><topic>chaotic satellite system</topic><topic>Control systems design</topic><topic>Emotion recognition</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>Satellites</topic><topic>self-organizing algorithm</topic><topic>Space vehicles</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>type-2 fuzzy system</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Nguyen Huu</creatorcontrib><creatorcontrib>Le, Tien-Loc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Nguyen Huu</au><au>Le, Tien-Loc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>47594</spage><epage>47606</epage><pages>47594-47606</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3379299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9849-9297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.47594-47606
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3033619225
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
asymmetric membership function
Asymmetry
Brain
Brain emotional learning control
Brain modeling
chaotic satellite system
Control systems design
Emotion recognition
Fuzzy control
Fuzzy systems
Learning
Learning systems
Performance evaluation
Robustness
Satellites
self-organizing algorithm
Space vehicles
Synchronism
Synchronization
type-2 fuzzy system
Uncertainty
title Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Satellite%20Synchronization%20Using%20Type-2%20Asymmetric%20Fuzzy%20Brain%20Emotional%20Learning%20Control&rft.jtitle=IEEE%20access&rft.au=Hung,%20Nguyen%20Huu&rft.date=2024&rft.volume=12&rft.spage=47594&rft.epage=47606&rft.pages=47594-47606&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3379299&rft_dat=%3Cproquest_doaj_%3E3033619225%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033619225&rft_id=info:pmid/&rft_ieee_id=10475321&rft_doaj_id=oai_doaj_org_article_f57ed048b16148c29d3878706731656f&rfr_iscdi=true