Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control
This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ens...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.47594-47606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47606 |
---|---|
container_issue | |
container_start_page | 47594 |
container_title | IEEE access |
container_volume | 12 |
creator | Hung, Nguyen Huu Le, Tien-Loc |
description | This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness. |
doi_str_mv | 10.1109/ACCESS.2024.3379299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3033619225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475321</ieee_id><doaj_id>oai_doaj_org_article_f57ed048b16148c29d3878706731656f</doaj_id><sourcerecordid>3033619225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2c1e0d2198683eb074c0bf8a9c34d450cdb541d9adaf2bc6a7cb2ef2cdfc50f33</originalsourceid><addsrcrecordid>eNpNkU1r3DAQhk1ooSHNL2gPgpy90YclWcet2XzAQg-bnIUsjRItXmkreQ_eX19vHUrmMsPwvu8wPFX1g-AVIVjdr7tus9utKKbNijGpqFJX1TUlQtWMM_Hl0_ytui1lj-dq5xWX15XZxHcTLTi0MyMMQxgB7aZo33OK4WzGkCJ6LSG-oZfpCDVF6zIdDjDmYNHD6Xye0K9sQkSbQ7pozYC2YHK8GLoUx5yG79VXb4YCtx_9pnp92Lx0T_X29-Nzt97WlnE11tQSwI4S1YqWQY9lY3HvW6Msa1zDsXU9b4hTxhlPeyuMtD0FT63zlmPP2E31vOS6ZPb6mMPB5EknE_S_Rcpv2uQx2AG05xIcbtqeCNK0lirHWtlKLCQjggs_Z90tWcec_pygjHqfTnn-rmiGGRNEUcpnFVtUNqdSMvj_VwnWFzR6QaMvaPQHmtn1c3EFAPjkaCRnlLC_WMeK6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033619225</pqid></control><display><type>article</type><title>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Hung, Nguyen Huu ; Le, Tien-Loc</creator><creatorcontrib>Hung, Nguyen Huu ; Le, Tien-Loc</creatorcontrib><description>This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3379299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; asymmetric membership function ; Asymmetry ; Brain ; Brain emotional learning control ; Brain modeling ; chaotic satellite system ; Control systems design ; Emotion recognition ; Fuzzy control ; Fuzzy systems ; Learning ; Learning systems ; Performance evaluation ; Robustness ; Satellites ; self-organizing algorithm ; Space vehicles ; Synchronism ; Synchronization ; type-2 fuzzy system ; Uncertainty</subject><ispartof>IEEE access, 2024, Vol.12, p.47594-47606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-2c1e0d2198683eb074c0bf8a9c34d450cdb541d9adaf2bc6a7cb2ef2cdfc50f33</cites><orcidid>0000-0002-9849-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hung, Nguyen Huu</creatorcontrib><creatorcontrib>Le, Tien-Loc</creatorcontrib><title>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.</description><subject>Algorithms</subject><subject>asymmetric membership function</subject><subject>Asymmetry</subject><subject>Brain</subject><subject>Brain emotional learning control</subject><subject>Brain modeling</subject><subject>chaotic satellite system</subject><subject>Control systems design</subject><subject>Emotion recognition</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>Satellites</subject><subject>self-organizing algorithm</subject><subject>Space vehicles</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>type-2 fuzzy system</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1r3DAQhk1ooSHNL2gPgpy90YclWcet2XzAQg-bnIUsjRItXmkreQ_eX19vHUrmMsPwvu8wPFX1g-AVIVjdr7tus9utKKbNijGpqFJX1TUlQtWMM_Hl0_ytui1lj-dq5xWX15XZxHcTLTi0MyMMQxgB7aZo33OK4WzGkCJ6LSG-oZfpCDVF6zIdDjDmYNHD6Xye0K9sQkSbQ7pozYC2YHK8GLoUx5yG79VXb4YCtx_9pnp92Lx0T_X29-Nzt97WlnE11tQSwI4S1YqWQY9lY3HvW6Msa1zDsXU9b4hTxhlPeyuMtD0FT63zlmPP2E31vOS6ZPb6mMPB5EknE_S_Rcpv2uQx2AG05xIcbtqeCNK0lirHWtlKLCQjggs_Z90tWcec_pygjHqfTnn-rmiGGRNEUcpnFVtUNqdSMvj_VwnWFzR6QaMvaPQHmtn1c3EFAPjkaCRnlLC_WMeK6w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hung, Nguyen Huu</creator><creator>Le, Tien-Loc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9849-9297</orcidid></search><sort><creationdate>2024</creationdate><title>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</title><author>Hung, Nguyen Huu ; Le, Tien-Loc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2c1e0d2198683eb074c0bf8a9c34d450cdb541d9adaf2bc6a7cb2ef2cdfc50f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>asymmetric membership function</topic><topic>Asymmetry</topic><topic>Brain</topic><topic>Brain emotional learning control</topic><topic>Brain modeling</topic><topic>chaotic satellite system</topic><topic>Control systems design</topic><topic>Emotion recognition</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>Satellites</topic><topic>self-organizing algorithm</topic><topic>Space vehicles</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>type-2 fuzzy system</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Nguyen Huu</creatorcontrib><creatorcontrib>Le, Tien-Loc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Nguyen Huu</au><au>Le, Tien-Loc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>47594</spage><epage>47606</epage><pages>47594-47606</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a novel approach for integrating synchronization techniques into chaotic satellite systems using type-2 fuzzy brain emotional learning control and asymmetric membership function. The proposed methodology aims to enhance the cognitive control capabilities of satellite systems, ensuring better adaptability and performance in dynamic and uncertain environments. The type-2 fuzzy brain emotional learning control system is designed to incorporate emotional learning mechanisms, enabling the satellite systems to make intelligent decisions and adapt their control strategies based on past experiences. By combining this emotional learning aspect with the asymmetric membership function, the control system gains the ability to handle uncertainties and imprecision in the system's inputs effectively. Furthermore, integrating self-organizing algorithms facilitates the automatic organization and adaptation of the control network structure, ensuring optimal system performance and scalability. To evaluate the effectiveness of the proposed approach, extensive simulations were conducted using representative scenarios of chaotic satellite systems. The results demonstrate the superiority of the type-2 fuzzy brain emotional learning control and asymmetric membership function integration, as it outperforms traditional control approaches regarding synchronization accuracy and robustness.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3379299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9849-9297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.47594-47606 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3033619225 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms asymmetric membership function Asymmetry Brain Brain emotional learning control Brain modeling chaotic satellite system Control systems design Emotion recognition Fuzzy control Fuzzy systems Learning Learning systems Performance evaluation Robustness Satellites self-organizing algorithm Space vehicles Synchronism Synchronization type-2 fuzzy system Uncertainty |
title | Enhanced Satellite Synchronization Using Type-2 Asymmetric Fuzzy Brain Emotional Learning Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Satellite%20Synchronization%20Using%20Type-2%20Asymmetric%20Fuzzy%20Brain%20Emotional%20Learning%20Control&rft.jtitle=IEEE%20access&rft.au=Hung,%20Nguyen%20Huu&rft.date=2024&rft.volume=12&rft.spage=47594&rft.epage=47606&rft.pages=47594-47606&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3379299&rft_dat=%3Cproquest_doaj_%3E3033619225%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033619225&rft_id=info:pmid/&rft_ieee_id=10475321&rft_doaj_id=oai_doaj_org_article_f57ed048b16148c29d3878706731656f&rfr_iscdi=true |