Low-Resolution Object Recognition with Cross-Resolution Relational Contrastive Distillation

Recognizing objects in low-resolution images is a challenging task due to the lack of informative details. Recent studies have shown that knowledge distillation approaches can effectively transfer knowledge from a high-resolution teacher model to a low-resolution student model by aligning cross-reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-04, Vol.34 (4), p.1-1
Hauptverfasser: Zhang, Kangkai, Ge, Shiming, Shi, Ruixin, Zeng, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recognizing objects in low-resolution images is a challenging task due to the lack of informative details. Recent studies have shown that knowledge distillation approaches can effectively transfer knowledge from a high-resolution teacher model to a low-resolution student model by aligning cross-resolution representations. However, these approaches still face limitations in adapting to the situation where the recognized objects exhibit significant representation discrepancies between training and testing images. In this study, we propose a cross-resolution relational contrastive distillation approach to facilitate low-resolution object recognition. Our approach enables the student model to mimic the behavior of a well-trained teacher model which delivers high accuracy in identifying high-resolution objects. To extract sufficient knowledge, the student learning is supervised with contrastive relational distillation loss, which preserves the similarities in various relational structures in contrastive representation space. In this manner, the capability of recovering missing details of familiar low-resolution objects can be effectively enhanced, leading to a better knowledge transfer. Extensive experiments on low-resolution object classification and low-resolution face recognition clearly demonstrate the effectiveness and adaptability of our approach.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2023.3310042