The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health

Childhood mental health problems are common, impairing, and can become chronic if left untreated. Children are not reliable reporters of their emotional and behavioral health, and caregivers often unintentionally under- or over-report child symptoms, making assessment challenging. Objective physiolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-04, Vol.PP (4), p.1-10
Hauptverfasser: Loftness, Bryn C., Halvorson-Phelan, Julia, OLeary, Aisling, Bradshaw, Carter, Prytherch, Shania, Berman, Isabel, Torous, John, Copeland, William L., Cheney, Nick, McGinnis, Ryan S., McGinnis, Ellen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title IEEE journal of biomedical and health informatics
container_volume PP
creator Loftness, Bryn C.
Halvorson-Phelan, Julia
OLeary, Aisling
Bradshaw, Carter
Prytherch, Shania
Berman, Isabel
Torous, John
Copeland, William L.
Cheney, Nick
McGinnis, Ryan S.
McGinnis, Ellen W.
description Childhood mental health problems are common, impairing, and can become chronic if left untreated. Children are not reliable reporters of their emotional and behavioral health, and caregivers often unintentionally under- or over-report child symptoms, making assessment challenging. Objective physiological and behavioral measures of emotional and behavioral health are emerging. However, these methods typically require specialized equipment and expertise in data and sensor engineering to administer and analyze. To address this challenge, we have developed the ChAMP (Childhood Assessment and Management of digital Phenotypes) System, which includes a mobile application for collecting movement and audio data during a battery of mood induction tasks and an open-source platform for extracting digital biomarkers. As proof of principle, we present ChAMP System data from 101 children 4-8 years old, with and without diagnosed mental health disorders. Machine learning models trained on these data detect the presence of specific disorders with 70-73% balanced accuracy, with similar results to clinical thresholds on established parent-report measures (63-82% balanced accuracy). Features favored in model architectures are described using Shapley Additive Explanations (SHAP). Canonical Correlation Analysis reveals moderate to strong associations between predictors of each disorder and associated symptom severity (r = .51-.83). The open-source ChAMP System provides clinically-relevant digital biomarkers that may later complement parent-report measures of emotional and behavioral health for detecting kids with underlying mental health conditions and lowers the barrier to entry for researchers interested in exploring digital phenotyping of childhood mental health.
doi_str_mv 10.1109/JBHI.2023.3337649
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3033618984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10333264</ieee_id><sourcerecordid>3033618984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1766d2f8c91fb4993253641bb8278ffeb49c0546fde78b106c48921cc52938e03</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoKuoPEEQCXry05mM3m3ir9aNKi4L1HHazk-5Kulk320P_vSmtIuYyYXjmYZgXoXNKhpQSdfNyN3keMsL4kHOeiUTtoWNGhRwwRuT-z5-q5AidhfBJ4pOxpcQhOuKSUCVodoyaeQV4XI1mb3jUtrd4hN9N7vLCAV5OIHd9hedgqsY7v1hj6zt8Dz2Yvm4W-L5e1H3u8FsFje_XLQTsLX7IO7eOytqVlfclnkGzgbayU3RgcxfgbFdP0Mfjw3w8GUxfn57Ho-nAcMX7Ac2EKJmVRlFbJEpxlnKR0KKQLJPWQuwZkibClpDJghJhEqkYNSZliksg_ARdb71t579WEHq9rIMB5_IG_CpoJlWakVRkLKJX_9BPv-qauJ3mhHNBpZJJpOiWMp0PoQOr265e5t1aU6I3eehNHnqTh97lEWcud-ZVsYTyd-Ln-hG42AI1APwRRgETCf8GsIaMBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033618984</pqid></control><display><type>article</type><title>The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health</title><source>IEEE Electronic Library (IEL)</source><creator>Loftness, Bryn C. ; Halvorson-Phelan, Julia ; OLeary, Aisling ; Bradshaw, Carter ; Prytherch, Shania ; Berman, Isabel ; Torous, John ; Copeland, William L. ; Cheney, Nick ; McGinnis, Ryan S. ; McGinnis, Ellen W.</creator><creatorcontrib>Loftness, Bryn C. ; Halvorson-Phelan, Julia ; OLeary, Aisling ; Bradshaw, Carter ; Prytherch, Shania ; Berman, Isabel ; Torous, John ; Copeland, William L. ; Cheney, Nick ; McGinnis, Ryan S. ; McGinnis, Ellen W.</creatorcontrib><description>Childhood mental health problems are common, impairing, and can become chronic if left untreated. Children are not reliable reporters of their emotional and behavioral health, and caregivers often unintentionally under- or over-report child symptoms, making assessment challenging. Objective physiological and behavioral measures of emotional and behavioral health are emerging. However, these methods typically require specialized equipment and expertise in data and sensor engineering to administer and analyze. To address this challenge, we have developed the ChAMP (Childhood Assessment and Management of digital Phenotypes) System, which includes a mobile application for collecting movement and audio data during a battery of mood induction tasks and an open-source platform for extracting digital biomarkers. As proof of principle, we present ChAMP System data from 101 children 4-8 years old, with and without diagnosed mental health disorders. Machine learning models trained on these data detect the presence of specific disorders with 70-73% balanced accuracy, with similar results to clinical thresholds on established parent-report measures (63-82% balanced accuracy). Features favored in model architectures are described using Shapley Additive Explanations (SHAP). Canonical Correlation Analysis reveals moderate to strong associations between predictors of each disorder and associated symptom severity (r = .51-.83). The open-source ChAMP System provides clinically-relevant digital biomarkers that may later complement parent-report measures of emotional and behavioral health for detecting kids with underlying mental health conditions and lowers the barrier to entry for researchers interested in exploring digital phenotyping of childhood mental health.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3337649</identifier><identifier>PMID: 38019617</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Additives ; adhd ; anxiety ; Anxiety disorders ; Applications programs ; Audio data ; Behavioral sciences ; Biomarkers ; Children ; Correlation analysis ; depression ; digital biomarkers ; digital health ; Disorders ; Emotional behavior ; Health problems ; Machine learning ; Mental disorders ; Mental health ; Mobile computing ; mobile health ; Mood ; Open source software ; Parents ; pediatric mental health ; Pediatrics ; Phenotypes ; Phenotyping ; Physiology ; Signs and symptoms ; Symptoms ; Task analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-04, Vol.PP (4), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1766d2f8c91fb4993253641bb8278ffeb49c0546fde78b106c48921cc52938e03</citedby><cites>FETCH-LOGICAL-c393t-1766d2f8c91fb4993253641bb8278ffeb49c0546fde78b106c48921cc52938e03</cites><orcidid>0000-0002-7140-2213 ; 0000-0001-8441-5921 ; 0000-0002-5362-7937 ; 0000-0002-1348-7781 ; 0000-0001-8396-6967 ; 0000-0001-8566-2289 ; 0009-0009-5992-7912 ; 0009-0004-9062-6871 ; 0000-0003-4597-0783 ; 0000-0003-1654-9228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10333264$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38019617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loftness, Bryn C.</creatorcontrib><creatorcontrib>Halvorson-Phelan, Julia</creatorcontrib><creatorcontrib>OLeary, Aisling</creatorcontrib><creatorcontrib>Bradshaw, Carter</creatorcontrib><creatorcontrib>Prytherch, Shania</creatorcontrib><creatorcontrib>Berman, Isabel</creatorcontrib><creatorcontrib>Torous, John</creatorcontrib><creatorcontrib>Copeland, William L.</creatorcontrib><creatorcontrib>Cheney, Nick</creatorcontrib><creatorcontrib>McGinnis, Ryan S.</creatorcontrib><creatorcontrib>McGinnis, Ellen W.</creatorcontrib><title>The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Childhood mental health problems are common, impairing, and can become chronic if left untreated. Children are not reliable reporters of their emotional and behavioral health, and caregivers often unintentionally under- or over-report child symptoms, making assessment challenging. Objective physiological and behavioral measures of emotional and behavioral health are emerging. However, these methods typically require specialized equipment and expertise in data and sensor engineering to administer and analyze. To address this challenge, we have developed the ChAMP (Childhood Assessment and Management of digital Phenotypes) System, which includes a mobile application for collecting movement and audio data during a battery of mood induction tasks and an open-source platform for extracting digital biomarkers. As proof of principle, we present ChAMP System data from 101 children 4-8 years old, with and without diagnosed mental health disorders. Machine learning models trained on these data detect the presence of specific disorders with 70-73% balanced accuracy, with similar results to clinical thresholds on established parent-report measures (63-82% balanced accuracy). Features favored in model architectures are described using Shapley Additive Explanations (SHAP). Canonical Correlation Analysis reveals moderate to strong associations between predictors of each disorder and associated symptom severity (r = .51-.83). The open-source ChAMP System provides clinically-relevant digital biomarkers that may later complement parent-report measures of emotional and behavioral health for detecting kids with underlying mental health conditions and lowers the barrier to entry for researchers interested in exploring digital phenotyping of childhood mental health.</description><subject>Accuracy</subject><subject>Additives</subject><subject>adhd</subject><subject>anxiety</subject><subject>Anxiety disorders</subject><subject>Applications programs</subject><subject>Audio data</subject><subject>Behavioral sciences</subject><subject>Biomarkers</subject><subject>Children</subject><subject>Correlation analysis</subject><subject>depression</subject><subject>digital biomarkers</subject><subject>digital health</subject><subject>Disorders</subject><subject>Emotional behavior</subject><subject>Health problems</subject><subject>Machine learning</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Mobile computing</subject><subject>mobile health</subject><subject>Mood</subject><subject>Open source software</subject><subject>Parents</subject><subject>pediatric mental health</subject><subject>Pediatrics</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Physiology</subject><subject>Signs and symptoms</subject><subject>Symptoms</subject><subject>Task analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhoMoKuoPEEQCXry05mM3m3ir9aNKi4L1HHazk-5Kulk320P_vSmtIuYyYXjmYZgXoXNKhpQSdfNyN3keMsL4kHOeiUTtoWNGhRwwRuT-z5-q5AidhfBJ4pOxpcQhOuKSUCVodoyaeQV4XI1mb3jUtrd4hN9N7vLCAV5OIHd9hedgqsY7v1hj6zt8Dz2Yvm4W-L5e1H3u8FsFje_XLQTsLX7IO7eOytqVlfclnkGzgbayU3RgcxfgbFdP0Mfjw3w8GUxfn57Ho-nAcMX7Ac2EKJmVRlFbJEpxlnKR0KKQLJPWQuwZkibClpDJghJhEqkYNSZliksg_ARdb71t579WEHq9rIMB5_IG_CpoJlWakVRkLKJX_9BPv-qauJ3mhHNBpZJJpOiWMp0PoQOr265e5t1aU6I3eehNHnqTh97lEWcud-ZVsYTyd-Ln-hG42AI1APwRRgETCf8GsIaMBQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Loftness, Bryn C.</creator><creator>Halvorson-Phelan, Julia</creator><creator>OLeary, Aisling</creator><creator>Bradshaw, Carter</creator><creator>Prytherch, Shania</creator><creator>Berman, Isabel</creator><creator>Torous, John</creator><creator>Copeland, William L.</creator><creator>Cheney, Nick</creator><creator>McGinnis, Ryan S.</creator><creator>McGinnis, Ellen W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7140-2213</orcidid><orcidid>https://orcid.org/0000-0001-8441-5921</orcidid><orcidid>https://orcid.org/0000-0002-5362-7937</orcidid><orcidid>https://orcid.org/0000-0002-1348-7781</orcidid><orcidid>https://orcid.org/0000-0001-8396-6967</orcidid><orcidid>https://orcid.org/0000-0001-8566-2289</orcidid><orcidid>https://orcid.org/0009-0009-5992-7912</orcidid><orcidid>https://orcid.org/0009-0004-9062-6871</orcidid><orcidid>https://orcid.org/0000-0003-4597-0783</orcidid><orcidid>https://orcid.org/0000-0003-1654-9228</orcidid></search><sort><creationdate>20240401</creationdate><title>The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health</title><author>Loftness, Bryn C. ; Halvorson-Phelan, Julia ; OLeary, Aisling ; Bradshaw, Carter ; Prytherch, Shania ; Berman, Isabel ; Torous, John ; Copeland, William L. ; Cheney, Nick ; McGinnis, Ryan S. ; McGinnis, Ellen W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1766d2f8c91fb4993253641bb8278ffeb49c0546fde78b106c48921cc52938e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Additives</topic><topic>adhd</topic><topic>anxiety</topic><topic>Anxiety disorders</topic><topic>Applications programs</topic><topic>Audio data</topic><topic>Behavioral sciences</topic><topic>Biomarkers</topic><topic>Children</topic><topic>Correlation analysis</topic><topic>depression</topic><topic>digital biomarkers</topic><topic>digital health</topic><topic>Disorders</topic><topic>Emotional behavior</topic><topic>Health problems</topic><topic>Machine learning</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Mobile computing</topic><topic>mobile health</topic><topic>Mood</topic><topic>Open source software</topic><topic>Parents</topic><topic>pediatric mental health</topic><topic>Pediatrics</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Physiology</topic><topic>Signs and symptoms</topic><topic>Symptoms</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loftness, Bryn C.</creatorcontrib><creatorcontrib>Halvorson-Phelan, Julia</creatorcontrib><creatorcontrib>OLeary, Aisling</creatorcontrib><creatorcontrib>Bradshaw, Carter</creatorcontrib><creatorcontrib>Prytherch, Shania</creatorcontrib><creatorcontrib>Berman, Isabel</creatorcontrib><creatorcontrib>Torous, John</creatorcontrib><creatorcontrib>Copeland, William L.</creatorcontrib><creatorcontrib>Cheney, Nick</creatorcontrib><creatorcontrib>McGinnis, Ryan S.</creatorcontrib><creatorcontrib>McGinnis, Ellen W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loftness, Bryn C.</au><au>Halvorson-Phelan, Julia</au><au>OLeary, Aisling</au><au>Bradshaw, Carter</au><au>Prytherch, Shania</au><au>Berman, Isabel</au><au>Torous, John</au><au>Copeland, William L.</au><au>Cheney, Nick</au><au>McGinnis, Ryan S.</au><au>McGinnis, Ellen W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>PP</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Childhood mental health problems are common, impairing, and can become chronic if left untreated. Children are not reliable reporters of their emotional and behavioral health, and caregivers often unintentionally under- or over-report child symptoms, making assessment challenging. Objective physiological and behavioral measures of emotional and behavioral health are emerging. However, these methods typically require specialized equipment and expertise in data and sensor engineering to administer and analyze. To address this challenge, we have developed the ChAMP (Childhood Assessment and Management of digital Phenotypes) System, which includes a mobile application for collecting movement and audio data during a battery of mood induction tasks and an open-source platform for extracting digital biomarkers. As proof of principle, we present ChAMP System data from 101 children 4-8 years old, with and without diagnosed mental health disorders. Machine learning models trained on these data detect the presence of specific disorders with 70-73% balanced accuracy, with similar results to clinical thresholds on established parent-report measures (63-82% balanced accuracy). Features favored in model architectures are described using Shapley Additive Explanations (SHAP). Canonical Correlation Analysis reveals moderate to strong associations between predictors of each disorder and associated symptom severity (r = .51-.83). The open-source ChAMP System provides clinically-relevant digital biomarkers that may later complement parent-report measures of emotional and behavioral health for detecting kids with underlying mental health conditions and lowers the barrier to entry for researchers interested in exploring digital phenotyping of childhood mental health.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38019617</pmid><doi>10.1109/JBHI.2023.3337649</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7140-2213</orcidid><orcidid>https://orcid.org/0000-0001-8441-5921</orcidid><orcidid>https://orcid.org/0000-0002-5362-7937</orcidid><orcidid>https://orcid.org/0000-0002-1348-7781</orcidid><orcidid>https://orcid.org/0000-0001-8396-6967</orcidid><orcidid>https://orcid.org/0000-0001-8566-2289</orcidid><orcidid>https://orcid.org/0009-0009-5992-7912</orcidid><orcidid>https://orcid.org/0009-0004-9062-6871</orcidid><orcidid>https://orcid.org/0000-0003-4597-0783</orcidid><orcidid>https://orcid.org/0000-0003-1654-9228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-04, Vol.PP (4), p.1-10
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_3033618984
source IEEE Electronic Library (IEL)
subjects Accuracy
Additives
adhd
anxiety
Anxiety disorders
Applications programs
Audio data
Behavioral sciences
Biomarkers
Children
Correlation analysis
depression
digital biomarkers
digital health
Disorders
Emotional behavior
Health problems
Machine learning
Mental disorders
Mental health
Mobile computing
mobile health
Mood
Open source software
Parents
pediatric mental health
Pediatrics
Phenotypes
Phenotyping
Physiology
Signs and symptoms
Symptoms
Task analysis
title The ChAMP App: A Scalable mHealth Technology for Detecting Digital Phenotypes of Early Childhood Mental Health
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ChAMP%20App:%20A%20Scalable%20mHealth%20Technology%20for%20Detecting%20Digital%20Phenotypes%20of%20Early%20Childhood%20Mental%20Health&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Loftness,%20Bryn%20C.&rft.date=2024-04-01&rft.volume=PP&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3337649&rft_dat=%3Cproquest_pubme%3E3033618984%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033618984&rft_id=info:pmid/38019617&rft_ieee_id=10333264&rfr_iscdi=true