Subspace dual and orthogonal frames by action of an abelian group

In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Γ of a locally compact group G . These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2024-06, Vol.15 (2), Article 32
Hauptverfasser: Sarkar, Sudipta, Shukla, Niraj K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of pseudo-differential operators and applications
container_volume 15
creator Sarkar, Sudipta
Shukla, Niraj K.
description In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Γ of a locally compact group G . These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair ( G , Γ ) . We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p -adic fields Q p , locally compact abelian groups using the fiberization map.
doi_str_mv 10.1007/s11868-024-00594-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3033035877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033035877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-56f836647cac72be5e2320cb6a3384e1adebeea75349d8ca14b0022a1910b44d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bT6OpfgFBQ8qeAuTbLa2tJs12T303xtd0ZvDwMzA-74MD0KXlFxTQtRNplRLXREmKkJqIyp2gmZUSlYZY95Of3dNz9Ei5x0pxQ2nlM_Q8nl0uQcfcDPCHkPX4JiG97iJXTnbBIeQsTti8MM2dji2RYLBhf22zE2KY3-BzlrY57D4mXP0enf7snqo1k_3j6vluvJMkaGqZau5lEJ58Iq5UAfGGfFOAudaBApNcCGAqrkwjfZAhSOEMaCGEidEw-foasrtU_wYQx7sLo6pfJktJ7x0rZUqKjapfIo5p9DaPm0PkI6WEvtFy060bKFlv2lZVkx8MuUi7jYh_UX_4_oEEphryw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033035877</pqid></control><display><type>article</type><title>Subspace dual and orthogonal frames by action of an abelian group</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sarkar, Sudipta ; Shukla, Niraj K.</creator><creatorcontrib>Sarkar, Sudipta ; Shukla, Niraj K.</creatorcontrib><description>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Γ of a locally compact group G . These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair ( G , Γ ) . We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p -adic fields Q p , locally compact abelian groups using the fiberization map.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-024-00594-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Functional Analysis ; Group theory ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Orthogonality ; Partial Differential Equations ; Subgroups ; Subspaces</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 32</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-56f836647cac72be5e2320cb6a3384e1adebeea75349d8ca14b0022a1910b44d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-024-00594-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-024-00594-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sarkar, Sudipta</creatorcontrib><creatorcontrib>Shukla, Niraj K.</creatorcontrib><title>Subspace dual and orthogonal frames by action of an abelian group</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Γ of a locally compact group G . These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair ( G , Γ ) . We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p -adic fields Q p , locally compact abelian groups using the fiberization map.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Functional Analysis</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Orthogonality</subject><subject>Partial Differential Equations</subject><subject>Subgroups</subject><subject>Subspaces</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bT6OpfgFBQ8qeAuTbLa2tJs12T303xtd0ZvDwMzA-74MD0KXlFxTQtRNplRLXREmKkJqIyp2gmZUSlYZY95Of3dNz9Ei5x0pxQ2nlM_Q8nl0uQcfcDPCHkPX4JiG97iJXTnbBIeQsTti8MM2dji2RYLBhf22zE2KY3-BzlrY57D4mXP0enf7snqo1k_3j6vluvJMkaGqZau5lEJ58Iq5UAfGGfFOAudaBApNcCGAqrkwjfZAhSOEMaCGEidEw-foasrtU_wYQx7sLo6pfJktJ7x0rZUqKjapfIo5p9DaPm0PkI6WEvtFy060bKFlv2lZVkx8MuUi7jYh_UX_4_oEEphryw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sarkar, Sudipta</creator><creator>Shukla, Niraj K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Subspace dual and orthogonal frames by action of an abelian group</title><author>Sarkar, Sudipta ; Shukla, Niraj K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-56f836647cac72be5e2320cb6a3384e1adebeea75349d8ca14b0022a1910b44d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Functional Analysis</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Orthogonality</topic><topic>Partial Differential Equations</topic><topic>Subgroups</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Sudipta</creatorcontrib><creatorcontrib>Shukla, Niraj K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Sudipta</au><au>Shukla, Niraj K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace dual and orthogonal frames by action of an abelian group</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><artnum>32</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Γ of a locally compact group G . These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair ( G , Γ ) . We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p -adic fields Q p , locally compact abelian groups using the fiberization map.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-024-00594-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1662-9981
ispartof Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 32
issn 1662-9981
1662-999X
language eng
recordid cdi_proquest_journals_3033035877
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Functional Analysis
Group theory
Mathematics
Mathematics and Statistics
Operator Theory
Orthogonality
Partial Differential Equations
Subgroups
Subspaces
title Subspace dual and orthogonal frames by action of an abelian group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20dual%20and%20orthogonal%20frames%20by%20action%20of%20an%20abelian%20group&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Sarkar,%20Sudipta&rft.date=2024-06-01&rft.volume=15&rft.issue=2&rft.artnum=32&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-024-00594-2&rft_dat=%3Cproquest_cross%3E3033035877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033035877&rft_id=info:pmid/&rfr_iscdi=true