Subspace dual and orthogonal frames by action of an abelian group
In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup Γ of a locally compact group G . These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2024-06, Vol.15 (2), Article 32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of pseudo-differential operators and applications |
container_volume | 15 |
creator | Sarkar, Sudipta Shukla, Niraj K. |
description | In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup
Γ
of a locally compact group
G
.
These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair
(
G
,
Γ
)
.
We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems,
p
-adic fields
Q
p
,
locally compact abelian groups using the fiberization map. |
doi_str_mv | 10.1007/s11868-024-00594-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3033035877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033035877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-56f836647cac72be5e2320cb6a3384e1adebeea75349d8ca14b0022a1910b44d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bT6OpfgFBQ8qeAuTbLa2tJs12T303xtd0ZvDwMzA-74MD0KXlFxTQtRNplRLXREmKkJqIyp2gmZUSlYZY95Of3dNz9Ei5x0pxQ2nlM_Q8nl0uQcfcDPCHkPX4JiG97iJXTnbBIeQsTti8MM2dji2RYLBhf22zE2KY3-BzlrY57D4mXP0enf7snqo1k_3j6vluvJMkaGqZau5lEJ58Iq5UAfGGfFOAudaBApNcCGAqrkwjfZAhSOEMaCGEidEw-foasrtU_wYQx7sLo6pfJktJ7x0rZUqKjapfIo5p9DaPm0PkI6WEvtFy060bKFlv2lZVkx8MuUi7jYh_UX_4_oEEphryw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033035877</pqid></control><display><type>article</type><title>Subspace dual and orthogonal frames by action of an abelian group</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sarkar, Sudipta ; Shukla, Niraj K.</creator><creatorcontrib>Sarkar, Sudipta ; Shukla, Niraj K.</creatorcontrib><description>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup
Γ
of a locally compact group
G
.
These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair
(
G
,
Γ
)
.
We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems,
p
-adic fields
Q
p
,
locally compact abelian groups using the fiberization map.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-024-00594-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Functional Analysis ; Group theory ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Orthogonality ; Partial Differential Equations ; Subgroups ; Subspaces</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 32</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-56f836647cac72be5e2320cb6a3384e1adebeea75349d8ca14b0022a1910b44d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-024-00594-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-024-00594-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sarkar, Sudipta</creatorcontrib><creatorcontrib>Shukla, Niraj K.</creatorcontrib><title>Subspace dual and orthogonal frames by action of an abelian group</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup
Γ
of a locally compact group
G
.
These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair
(
G
,
Γ
)
.
We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems,
p
-adic fields
Q
p
,
locally compact abelian groups using the fiberization map.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Functional Analysis</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Orthogonality</subject><subject>Partial Differential Equations</subject><subject>Subgroups</subject><subject>Subspaces</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59V8bT6OpfgFBQ8qeAuTbLa2tJs12T303xtd0ZvDwMzA-74MD0KXlFxTQtRNplRLXREmKkJqIyp2gmZUSlYZY95Of3dNz9Ei5x0pxQ2nlM_Q8nl0uQcfcDPCHkPX4JiG97iJXTnbBIeQsTti8MM2dji2RYLBhf22zE2KY3-BzlrY57D4mXP0enf7snqo1k_3j6vluvJMkaGqZau5lEJ58Iq5UAfGGfFOAudaBApNcCGAqrkwjfZAhSOEMaCGEidEw-foasrtU_wYQx7sLo6pfJktJ7x0rZUqKjapfIo5p9DaPm0PkI6WEvtFy060bKFlv2lZVkx8MuUi7jYh_UX_4_oEEphryw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sarkar, Sudipta</creator><creator>Shukla, Niraj K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Subspace dual and orthogonal frames by action of an abelian group</title><author>Sarkar, Sudipta ; Shukla, Niraj K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-56f836647cac72be5e2320cb6a3384e1adebeea75349d8ca14b0022a1910b44d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Functional Analysis</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Orthogonality</topic><topic>Partial Differential Equations</topic><topic>Subgroups</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Sudipta</creatorcontrib><creatorcontrib>Shukla, Niraj K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Sudipta</au><au>Shukla, Niraj K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace dual and orthogonal frames by action of an abelian group</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><artnum>32</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup
Γ
of a locally compact group
G
.
These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair
(
G
,
Γ
)
.
We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems,
p
-adic fields
Q
p
,
locally compact abelian groups using the fiberization map.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-024-00594-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-9981 |
ispartof | Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 32 |
issn | 1662-9981 1662-999X |
language | eng |
recordid | cdi_proquest_journals_3033035877 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Functional Analysis Group theory Mathematics Mathematics and Statistics Operator Theory Orthogonality Partial Differential Equations Subgroups Subspaces |
title | Subspace dual and orthogonal frames by action of an abelian group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20dual%20and%20orthogonal%20frames%20by%20action%20of%20an%20abelian%20group&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Sarkar,%20Sudipta&rft.date=2024-06-01&rft.volume=15&rft.issue=2&rft.artnum=32&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-024-00594-2&rft_dat=%3Cproquest_cross%3E3033035877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3033035877&rft_id=info:pmid/&rfr_iscdi=true |