Direct Exchange in Ultra‐Thin Ferromagnetic Janus MXenes

The development of spintronic devices urgently requires ultra‐thin two‐dimensional (2D) ferromagnetic materials with high Curie temperature (Tc), TC however, there are few natural intrinsic ferromagnetic 2D materials. The successful synthesis of Janus monolayer MoSSe in experiments provides a new ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2024-04, Vol.18 (4), p.n/a
Hauptverfasser: Yan, Xuanhui, Zheng, Jiming, Zhao, Xi, Zhao, Puju, Guo, Ping, Jiang, Zhenyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 18
creator Yan, Xuanhui
Zheng, Jiming
Zhao, Xi
Zhao, Puju
Guo, Ping
Jiang, Zhenyi
description The development of spintronic devices urgently requires ultra‐thin two‐dimensional (2D) ferromagnetic materials with high Curie temperature (Tc), TC however, there are few natural intrinsic ferromagnetic 2D materials. The successful synthesis of Janus monolayer MoSSe in experiments provides a new approach for designing new 2D materials. By replacing transition metal carbides with two different transition metal atoms, we have designed over 70 Janus MXence materials and determined that 30+ materials have ferromagnetic ground states, of which three have robust ferromagnetism through density functional theory analysis. The ferromagnetic coupling in such materials mainly originates from the direct exchange of d‐orbitals between transition metal atoms in different layers. Further, using K‐nearest neighbours (KNN) machine learning (ML) method, six out of the remaining 360 Janus MXence systems were screened for ferromagnetism, with one system exhibiting strong ferromagnetism. This work provides an alternative and convenient method for developing ultra‐thin 2D magnetic materials for next generation spintronic device applications. The first principles calculations are combined with machine learning (ML) and 30+ ferromagnetic materials are discovered among 400+ double transition metal Janus MXenes materials. The Curie temperature of CrWC and TiNiC exceeds the room temperature. The ferromagnetism in these materials mainly comes from direct exchange between the d‐orbitals of different transition metal atoms.
doi_str_mv 10.1002/pssr.202300468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3032871771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032871771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-81c997ced0a20d2d69f270cfeaaa777ddb3e0333b7f571171f71c5c0d5e483af3</originalsourceid><addsrcrecordid>eNqFkM9OwkAQhzdGExG9em7iuTi723ZabwbBP8FoBBJvm2U7CyXQ4m6JcvMRfEafxBIMHj3NTPL7ZiYfY-ccOhxAXK68dx0BQgJESXrAWjxNRJgIhMN9H0fH7MT7OUCcYSRb7OqmcGTqoPdhZrqcUlCUwXhRO_39-TWaNUOfnKuWelpSXZjgQZdrHzy-Ukn-lB1ZvfB09lvbbNzvjbp34eDp9r57PQiNQJGGKTdZhoZy0AJykSeZbV4ylrTWiJjnE0kgpZygjZFz5Ba5iQ3kMUWp1Fa22cVu78pVb2vytZpXa1c2J5UEKVLkiLxJdXYp46pGBFm1csVSu43ioLZ-1NaP2vtpgGwHvBcL2vyTVs_D4csf-wNITGo6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3032871771</pqid></control><display><type>article</type><title>Direct Exchange in Ultra‐Thin Ferromagnetic Janus MXenes</title><source>Access via Wiley Online Library</source><creator>Yan, Xuanhui ; Zheng, Jiming ; Zhao, Xi ; Zhao, Puju ; Guo, Ping ; Jiang, Zhenyi</creator><creatorcontrib>Yan, Xuanhui ; Zheng, Jiming ; Zhao, Xi ; Zhao, Puju ; Guo, Ping ; Jiang, Zhenyi</creatorcontrib><description>The development of spintronic devices urgently requires ultra‐thin two‐dimensional (2D) ferromagnetic materials with high Curie temperature (Tc), TC however, there are few natural intrinsic ferromagnetic 2D materials. The successful synthesis of Janus monolayer MoSSe in experiments provides a new approach for designing new 2D materials. By replacing transition metal carbides with two different transition metal atoms, we have designed over 70 Janus MXence materials and determined that 30+ materials have ferromagnetic ground states, of which three have robust ferromagnetism through density functional theory analysis. The ferromagnetic coupling in such materials mainly originates from the direct exchange of d‐orbitals between transition metal atoms in different layers. Further, using K‐nearest neighbours (KNN) machine learning (ML) method, six out of the remaining 360 Janus MXence systems were screened for ferromagnetism, with one system exhibiting strong ferromagnetism. This work provides an alternative and convenient method for developing ultra‐thin 2D magnetic materials for next generation spintronic device applications. The first principles calculations are combined with machine learning (ML) and 30+ ferromagnetic materials are discovered among 400+ double transition metal Janus MXenes materials. The Curie temperature of CrWC and TiNiC exceeds the room temperature. The ferromagnetism in these materials mainly comes from direct exchange between the d‐orbitals of different transition metal atoms.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202300468</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Curie temperature ; Density functional theory ; Electrons ; Ferromagnetic materials ; ferromagnetism ; Janus MXenes ; Machine learning ; Magnetic materials ; Metal carbides ; the curie temperature ; Transition metals ; Two dimensional materials</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2024-04, Vol.18 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2728-81c997ced0a20d2d69f270cfeaaa777ddb3e0333b7f571171f71c5c0d5e483af3</cites><orcidid>0000-0003-2703-3948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202300468$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202300468$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Yan, Xuanhui</creatorcontrib><creatorcontrib>Zheng, Jiming</creatorcontrib><creatorcontrib>Zhao, Xi</creatorcontrib><creatorcontrib>Zhao, Puju</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><creatorcontrib>Jiang, Zhenyi</creatorcontrib><title>Direct Exchange in Ultra‐Thin Ferromagnetic Janus MXenes</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>The development of spintronic devices urgently requires ultra‐thin two‐dimensional (2D) ferromagnetic materials with high Curie temperature (Tc), TC however, there are few natural intrinsic ferromagnetic 2D materials. The successful synthesis of Janus monolayer MoSSe in experiments provides a new approach for designing new 2D materials. By replacing transition metal carbides with two different transition metal atoms, we have designed over 70 Janus MXence materials and determined that 30+ materials have ferromagnetic ground states, of which three have robust ferromagnetism through density functional theory analysis. The ferromagnetic coupling in such materials mainly originates from the direct exchange of d‐orbitals between transition metal atoms in different layers. Further, using K‐nearest neighbours (KNN) machine learning (ML) method, six out of the remaining 360 Janus MXence systems were screened for ferromagnetism, with one system exhibiting strong ferromagnetism. This work provides an alternative and convenient method for developing ultra‐thin 2D magnetic materials for next generation spintronic device applications. The first principles calculations are combined with machine learning (ML) and 30+ ferromagnetic materials are discovered among 400+ double transition metal Janus MXenes materials. The Curie temperature of CrWC and TiNiC exceeds the room temperature. The ferromagnetism in these materials mainly comes from direct exchange between the d‐orbitals of different transition metal atoms.</description><subject>Curie temperature</subject><subject>Density functional theory</subject><subject>Electrons</subject><subject>Ferromagnetic materials</subject><subject>ferromagnetism</subject><subject>Janus MXenes</subject><subject>Machine learning</subject><subject>Magnetic materials</subject><subject>Metal carbides</subject><subject>the curie temperature</subject><subject>Transition metals</subject><subject>Two dimensional materials</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwkAQhzdGExG9em7iuTi723ZabwbBP8FoBBJvm2U7CyXQ4m6JcvMRfEafxBIMHj3NTPL7ZiYfY-ccOhxAXK68dx0BQgJESXrAWjxNRJgIhMN9H0fH7MT7OUCcYSRb7OqmcGTqoPdhZrqcUlCUwXhRO_39-TWaNUOfnKuWelpSXZjgQZdrHzy-Ukn-lB1ZvfB09lvbbNzvjbp34eDp9r57PQiNQJGGKTdZhoZy0AJykSeZbV4ylrTWiJjnE0kgpZygjZFz5Ba5iQ3kMUWp1Fa22cVu78pVb2vytZpXa1c2J5UEKVLkiLxJdXYp46pGBFm1csVSu43ioLZ-1NaP2vtpgGwHvBcL2vyTVs_D4csf-wNITGo6</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Yan, Xuanhui</creator><creator>Zheng, Jiming</creator><creator>Zhao, Xi</creator><creator>Zhao, Puju</creator><creator>Guo, Ping</creator><creator>Jiang, Zhenyi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2703-3948</orcidid></search><sort><creationdate>202404</creationdate><title>Direct Exchange in Ultra‐Thin Ferromagnetic Janus MXenes</title><author>Yan, Xuanhui ; Zheng, Jiming ; Zhao, Xi ; Zhao, Puju ; Guo, Ping ; Jiang, Zhenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-81c997ced0a20d2d69f270cfeaaa777ddb3e0333b7f571171f71c5c0d5e483af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Curie temperature</topic><topic>Density functional theory</topic><topic>Electrons</topic><topic>Ferromagnetic materials</topic><topic>ferromagnetism</topic><topic>Janus MXenes</topic><topic>Machine learning</topic><topic>Magnetic materials</topic><topic>Metal carbides</topic><topic>the curie temperature</topic><topic>Transition metals</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xuanhui</creatorcontrib><creatorcontrib>Zheng, Jiming</creatorcontrib><creatorcontrib>Zhao, Xi</creatorcontrib><creatorcontrib>Zhao, Puju</creatorcontrib><creatorcontrib>Guo, Ping</creatorcontrib><creatorcontrib>Jiang, Zhenyi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xuanhui</au><au>Zheng, Jiming</au><au>Zhao, Xi</au><au>Zhao, Puju</au><au>Guo, Ping</au><au>Jiang, Zhenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Exchange in Ultra‐Thin Ferromagnetic Janus MXenes</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2024-04</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>The development of spintronic devices urgently requires ultra‐thin two‐dimensional (2D) ferromagnetic materials with high Curie temperature (Tc), TC however, there are few natural intrinsic ferromagnetic 2D materials. The successful synthesis of Janus monolayer MoSSe in experiments provides a new approach for designing new 2D materials. By replacing transition metal carbides with two different transition metal atoms, we have designed over 70 Janus MXence materials and determined that 30+ materials have ferromagnetic ground states, of which three have robust ferromagnetism through density functional theory analysis. The ferromagnetic coupling in such materials mainly originates from the direct exchange of d‐orbitals between transition metal atoms in different layers. Further, using K‐nearest neighbours (KNN) machine learning (ML) method, six out of the remaining 360 Janus MXence systems were screened for ferromagnetism, with one system exhibiting strong ferromagnetism. This work provides an alternative and convenient method for developing ultra‐thin 2D magnetic materials for next generation spintronic device applications. The first principles calculations are combined with machine learning (ML) and 30+ ferromagnetic materials are discovered among 400+ double transition metal Janus MXenes materials. The Curie temperature of CrWC and TiNiC exceeds the room temperature. The ferromagnetism in these materials mainly comes from direct exchange between the d‐orbitals of different transition metal atoms.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202300468</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2703-3948</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2024-04, Vol.18 (4), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_3032871771
source Access via Wiley Online Library
subjects Curie temperature
Density functional theory
Electrons
Ferromagnetic materials
ferromagnetism
Janus MXenes
Machine learning
Magnetic materials
Metal carbides
the curie temperature
Transition metals
Two dimensional materials
title Direct Exchange in Ultra‐Thin Ferromagnetic Janus MXenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Exchange%20in%20Ultra%E2%80%90Thin%20Ferromagnetic%20Janus%20MXenes&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Yan,%20Xuanhui&rft.date=2024-04&rft.volume=18&rft.issue=4&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202300468&rft_dat=%3Cproquest_cross%3E3032871771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3032871771&rft_id=info:pmid/&rfr_iscdi=true