Cumulative fretting fatigue damage model for steel wire ropes

Fretting fatigue contributes significantly to the fatigue failure process in steel wire ropes at the wire‐to‐wire trellis contact region with partial slip conditions. In this respect, this work demonstrates a new damage‐based fretting fatigue model for the prediction of such a failure process. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2024-05, Vol.47 (5), p.1656-1676
Hauptverfasser: Ahmad, Sajjad, Badshah, Saeed, Rahimian Koloor, Seyed Saeid, Amjad, Muhammad, Jan, Sakhi, Tamin, Mohd Nasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1676
container_issue 5
container_start_page 1656
container_title Fatigue & fracture of engineering materials & structures
container_volume 47
creator Ahmad, Sajjad
Badshah, Saeed
Rahimian Koloor, Seyed Saeid
Amjad, Muhammad
Jan, Sakhi
Tamin, Mohd Nasir
description Fretting fatigue contributes significantly to the fatigue failure process in steel wire ropes at the wire‐to‐wire trellis contact region with partial slip conditions. In this respect, this work demonstrates a new damage‐based fretting fatigue model for the prediction of such a failure process. The model is based on Lemaitre's damage equations for quasi‐brittle material with a damageable micro‐inclusion embedded in an elastic meso‐element. It incorporates the cyclic degradation of the elastic modulus of the drawn steel wire material. The fatigue life model acknowledges the mean stress effect. The constitutive and damage equations are formulated into user material (UMAT) subroutine for integration with Abaqus finite element analysis code. The localized fretting fatigue damage mechanism is simulated with an isolated two‐wire model. The effect of the contact condition with the coefficient of friction of 0.2 and 0.8 on the contact mechanics of the drawn wires is considered. The fretting fatigue mechanism map is established for each simulation case. The simulated results of N0 (no of cycles to initiate damage) and damage variable, D, confirm the fretting fatigue condition as the damage occurs in the slip region of the contact area for both the frictional conditions. The results were found in agreement with the previously establish Ruiz fretting parameter. This study will provide a base for the onward reliability assessment of steel wire ropes. Highlights A damage‐based Lemaitre two‐scale model has been modified for the fretting fatigue mechanism in the steel wire ropes. A unified curve of residual elastic modulus has been established through interrupted fatigue tests for different load ratios. A UMAT Subroutine is developed using ABAQUS software. The response of the damage model has been investigated using different parameters like Damage D, Residual Elastic Modulus E(N), Number of cycles to initiate damage N0, and von Mises stress at the contact region.
doi_str_mv 10.1111/ffe.14264
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3032845666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032845666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2574-31d1e19a91d0c02304231e8398754563c2494e84b1338cf982b338b929287d63</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9Vcce2BAUQNIlVg6sFn5OEepkibYCVX_PW7Dyi33nvTce6cXoUdKVjTU2lpYUcGkuEILKiSJmNTxNVqoJJZREquvW3Tn_Z4QKgXnC_SSTt3U5mPzA9g6GMfmUGMb5noCXOVdXgPu-gpabHuH_QhBHRsH2PUD-Ht0Y_PWw8NfX6Jdttml79H28-0jfd1GJYsTEXFaUaA617QiJWGcCMYpKK7DVyKWvGRCC1CioJyr0mrFiiAKzTRTSSX5Ej3NtoPrvyfwo9n3kzuEi4YTzlTwkGfqeaZK13vvwJrBNV3uToYScw7HhHDMJZzArmf22LRw-h80WbaZN34BwDZjTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3032845666</pqid></control><display><type>article</type><title>Cumulative fretting fatigue damage model for steel wire ropes</title><source>Access via Wiley Online Library</source><creator>Ahmad, Sajjad ; Badshah, Saeed ; Rahimian Koloor, Seyed Saeid ; Amjad, Muhammad ; Jan, Sakhi ; Tamin, Mohd Nasir</creator><creatorcontrib>Ahmad, Sajjad ; Badshah, Saeed ; Rahimian Koloor, Seyed Saeid ; Amjad, Muhammad ; Jan, Sakhi ; Tamin, Mohd Nasir</creatorcontrib><description>Fretting fatigue contributes significantly to the fatigue failure process in steel wire ropes at the wire‐to‐wire trellis contact region with partial slip conditions. In this respect, this work demonstrates a new damage‐based fretting fatigue model for the prediction of such a failure process. The model is based on Lemaitre's damage equations for quasi‐brittle material with a damageable micro‐inclusion embedded in an elastic meso‐element. It incorporates the cyclic degradation of the elastic modulus of the drawn steel wire material. The fatigue life model acknowledges the mean stress effect. The constitutive and damage equations are formulated into user material (UMAT) subroutine for integration with Abaqus finite element analysis code. The localized fretting fatigue damage mechanism is simulated with an isolated two‐wire model. The effect of the contact condition with the coefficient of friction of 0.2 and 0.8 on the contact mechanics of the drawn wires is considered. The fretting fatigue mechanism map is established for each simulation case. The simulated results of N0 (no of cycles to initiate damage) and damage variable, D, confirm the fretting fatigue condition as the damage occurs in the slip region of the contact area for both the frictional conditions. The results were found in agreement with the previously establish Ruiz fretting parameter. This study will provide a base for the onward reliability assessment of steel wire ropes. Highlights A damage‐based Lemaitre two‐scale model has been modified for the fretting fatigue mechanism in the steel wire ropes. A unified curve of residual elastic modulus has been established through interrupted fatigue tests for different load ratios. A UMAT Subroutine is developed using ABAQUS software. The response of the damage model has been investigated using different parameters like Damage D, Residual Elastic Modulus E(N), Number of cycles to initiate damage N0, and von Mises stress at the contact region.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.14264</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Brittle materials ; Coefficient of friction ; Computer simulation ; Contact stresses ; cumulative fatigue damage ; Damage assessment ; Damage localization ; Fatigue failure ; Fatigue life ; Fatigue tests ; Finite element method ; finite element simulation ; fretting fatigue ; Mathematical models ; Metal fatigue ; Modulus of elasticity ; Parameters ; Reliability analysis ; Scale models ; Steel wire ; steel wire ropes ; Subroutines ; Wire ; Wire drawing ; Wire rope</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2024-05, Vol.47 (5), p.1656-1676</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2574-31d1e19a91d0c02304231e8398754563c2494e84b1338cf982b338b929287d63</cites><orcidid>0000-0002-1820-6379 ; 0000-0002-5653-180X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.14264$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.14264$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ahmad, Sajjad</creatorcontrib><creatorcontrib>Badshah, Saeed</creatorcontrib><creatorcontrib>Rahimian Koloor, Seyed Saeid</creatorcontrib><creatorcontrib>Amjad, Muhammad</creatorcontrib><creatorcontrib>Jan, Sakhi</creatorcontrib><creatorcontrib>Tamin, Mohd Nasir</creatorcontrib><title>Cumulative fretting fatigue damage model for steel wire ropes</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Fretting fatigue contributes significantly to the fatigue failure process in steel wire ropes at the wire‐to‐wire trellis contact region with partial slip conditions. In this respect, this work demonstrates a new damage‐based fretting fatigue model for the prediction of such a failure process. The model is based on Lemaitre's damage equations for quasi‐brittle material with a damageable micro‐inclusion embedded in an elastic meso‐element. It incorporates the cyclic degradation of the elastic modulus of the drawn steel wire material. The fatigue life model acknowledges the mean stress effect. The constitutive and damage equations are formulated into user material (UMAT) subroutine for integration with Abaqus finite element analysis code. The localized fretting fatigue damage mechanism is simulated with an isolated two‐wire model. The effect of the contact condition with the coefficient of friction of 0.2 and 0.8 on the contact mechanics of the drawn wires is considered. The fretting fatigue mechanism map is established for each simulation case. The simulated results of N0 (no of cycles to initiate damage) and damage variable, D, confirm the fretting fatigue condition as the damage occurs in the slip region of the contact area for both the frictional conditions. The results were found in agreement with the previously establish Ruiz fretting parameter. This study will provide a base for the onward reliability assessment of steel wire ropes. Highlights A damage‐based Lemaitre two‐scale model has been modified for the fretting fatigue mechanism in the steel wire ropes. A unified curve of residual elastic modulus has been established through interrupted fatigue tests for different load ratios. A UMAT Subroutine is developed using ABAQUS software. The response of the damage model has been investigated using different parameters like Damage D, Residual Elastic Modulus E(N), Number of cycles to initiate damage N0, and von Mises stress at the contact region.</description><subject>Brittle materials</subject><subject>Coefficient of friction</subject><subject>Computer simulation</subject><subject>Contact stresses</subject><subject>cumulative fatigue damage</subject><subject>Damage assessment</subject><subject>Damage localization</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Finite element method</subject><subject>finite element simulation</subject><subject>fretting fatigue</subject><subject>Mathematical models</subject><subject>Metal fatigue</subject><subject>Modulus of elasticity</subject><subject>Parameters</subject><subject>Reliability analysis</subject><subject>Scale models</subject><subject>Steel wire</subject><subject>steel wire ropes</subject><subject>Subroutines</subject><subject>Wire</subject><subject>Wire drawing</subject><subject>Wire rope</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9Vcce2BAUQNIlVg6sFn5OEepkibYCVX_PW7Dyi33nvTce6cXoUdKVjTU2lpYUcGkuEILKiSJmNTxNVqoJJZREquvW3Tn_Z4QKgXnC_SSTt3U5mPzA9g6GMfmUGMb5noCXOVdXgPu-gpabHuH_QhBHRsH2PUD-Ht0Y_PWw8NfX6Jdttml79H28-0jfd1GJYsTEXFaUaA617QiJWGcCMYpKK7DVyKWvGRCC1CioJyr0mrFiiAKzTRTSSX5Ej3NtoPrvyfwo9n3kzuEi4YTzlTwkGfqeaZK13vvwJrBNV3uToYScw7HhHDMJZzArmf22LRw-h80WbaZN34BwDZjTA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ahmad, Sajjad</creator><creator>Badshah, Saeed</creator><creator>Rahimian Koloor, Seyed Saeid</creator><creator>Amjad, Muhammad</creator><creator>Jan, Sakhi</creator><creator>Tamin, Mohd Nasir</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1820-6379</orcidid><orcidid>https://orcid.org/0000-0002-5653-180X</orcidid></search><sort><creationdate>202405</creationdate><title>Cumulative fretting fatigue damage model for steel wire ropes</title><author>Ahmad, Sajjad ; Badshah, Saeed ; Rahimian Koloor, Seyed Saeid ; Amjad, Muhammad ; Jan, Sakhi ; Tamin, Mohd Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2574-31d1e19a91d0c02304231e8398754563c2494e84b1338cf982b338b929287d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brittle materials</topic><topic>Coefficient of friction</topic><topic>Computer simulation</topic><topic>Contact stresses</topic><topic>cumulative fatigue damage</topic><topic>Damage assessment</topic><topic>Damage localization</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Finite element method</topic><topic>finite element simulation</topic><topic>fretting fatigue</topic><topic>Mathematical models</topic><topic>Metal fatigue</topic><topic>Modulus of elasticity</topic><topic>Parameters</topic><topic>Reliability analysis</topic><topic>Scale models</topic><topic>Steel wire</topic><topic>steel wire ropes</topic><topic>Subroutines</topic><topic>Wire</topic><topic>Wire drawing</topic><topic>Wire rope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Sajjad</creatorcontrib><creatorcontrib>Badshah, Saeed</creatorcontrib><creatorcontrib>Rahimian Koloor, Seyed Saeid</creatorcontrib><creatorcontrib>Amjad, Muhammad</creatorcontrib><creatorcontrib>Jan, Sakhi</creatorcontrib><creatorcontrib>Tamin, Mohd Nasir</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Sajjad</au><au>Badshah, Saeed</au><au>Rahimian Koloor, Seyed Saeid</au><au>Amjad, Muhammad</au><au>Jan, Sakhi</au><au>Tamin, Mohd Nasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative fretting fatigue damage model for steel wire ropes</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2024-05</date><risdate>2024</risdate><volume>47</volume><issue>5</issue><spage>1656</spage><epage>1676</epage><pages>1656-1676</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Fretting fatigue contributes significantly to the fatigue failure process in steel wire ropes at the wire‐to‐wire trellis contact region with partial slip conditions. In this respect, this work demonstrates a new damage‐based fretting fatigue model for the prediction of such a failure process. The model is based on Lemaitre's damage equations for quasi‐brittle material with a damageable micro‐inclusion embedded in an elastic meso‐element. It incorporates the cyclic degradation of the elastic modulus of the drawn steel wire material. The fatigue life model acknowledges the mean stress effect. The constitutive and damage equations are formulated into user material (UMAT) subroutine for integration with Abaqus finite element analysis code. The localized fretting fatigue damage mechanism is simulated with an isolated two‐wire model. The effect of the contact condition with the coefficient of friction of 0.2 and 0.8 on the contact mechanics of the drawn wires is considered. The fretting fatigue mechanism map is established for each simulation case. The simulated results of N0 (no of cycles to initiate damage) and damage variable, D, confirm the fretting fatigue condition as the damage occurs in the slip region of the contact area for both the frictional conditions. The results were found in agreement with the previously establish Ruiz fretting parameter. This study will provide a base for the onward reliability assessment of steel wire ropes. Highlights A damage‐based Lemaitre two‐scale model has been modified for the fretting fatigue mechanism in the steel wire ropes. A unified curve of residual elastic modulus has been established through interrupted fatigue tests for different load ratios. A UMAT Subroutine is developed using ABAQUS software. The response of the damage model has been investigated using different parameters like Damage D, Residual Elastic Modulus E(N), Number of cycles to initiate damage N0, and von Mises stress at the contact region.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.14264</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1820-6379</orcidid><orcidid>https://orcid.org/0000-0002-5653-180X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2024-05, Vol.47 (5), p.1656-1676
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_3032845666
source Access via Wiley Online Library
subjects Brittle materials
Coefficient of friction
Computer simulation
Contact stresses
cumulative fatigue damage
Damage assessment
Damage localization
Fatigue failure
Fatigue life
Fatigue tests
Finite element method
finite element simulation
fretting fatigue
Mathematical models
Metal fatigue
Modulus of elasticity
Parameters
Reliability analysis
Scale models
Steel wire
steel wire ropes
Subroutines
Wire
Wire drawing
Wire rope
title Cumulative fretting fatigue damage model for steel wire ropes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20fretting%20fatigue%20damage%20model%20for%20steel%20wire%20ropes&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Ahmad,%20Sajjad&rft.date=2024-05&rft.volume=47&rft.issue=5&rft.spage=1656&rft.epage=1676&rft.pages=1656-1676&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.14264&rft_dat=%3Cproquest_cross%3E3032845666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3032845666&rft_id=info:pmid/&rfr_iscdi=true