An automatic feature point extraction method based on laser vision for robotic multi-layer multi-pass weld seam tracking

Laser vision-based seam tracking has been an important research hotspot in modern welding manufacturing. However, severe noise interference during welding and the complex contour curves of filling welds hinder the development of high-precision seam tracking in multi-layer multi-pass (MLMP) welding....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-04, Vol.131 (12), p.5941-5960
Hauptverfasser: Xu, Fengjing, He, Lei, Hou, Zhen, Xiao, Runquan, Zuo, Tianyi, Li, Jiacheng, Xu, Yanling, Zhang, Huajun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5960
container_issue 12
container_start_page 5941
container_title International journal of advanced manufacturing technology
container_volume 131
creator Xu, Fengjing
He, Lei
Hou, Zhen
Xiao, Runquan
Zuo, Tianyi
Li, Jiacheng
Xu, Yanling
Zhang, Huajun
description Laser vision-based seam tracking has been an important research hotspot in modern welding manufacturing. However, severe noise interference during welding and the complex contour curves of filling welds hinder the development of high-precision seam tracking in multi-layer multi-pass (MLMP) welding. To solve this problem, a point distribution model (PDM) has been implemented to express the laser stripe pattern of MLMP welds. Then, an end-to-end feature point extraction algorithm is proposed. The “coarse-to-fine” positioning strategy achieves global correlation and local constraints. The low-resolution heatmap regression and coordinate offset regression balance the efficiency and precision, where the backbone is improved with attention mechanisms. Furthermore, the soft coordinate loss and the Gaussian mixture model were combined to improve the generalization performance. Based on the model, an automatic ROI extraction method and output points filtering are implemented to complete the whole tracking process. In experiments, the proposed method achieved good tracking performance even under strong noise, with the mean absolute error (MAE) being controlled within 0.3 mm. The feature point extraction method shows advantages in both precision and stability, laying a foundation for advanced robotic MLMP welding production.
doi_str_mv 10.1007/s00170-024-13245-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3032845539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3032845539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5a379df532055c1ae81569b621bdf6c784c92b2666813d533487e76ba827152f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA62gezaPLYfAFA250HdI2HTu2TU1SnZlfb2oFd67uvZxzvgsHgCuCbwjG8jZgTCRGmGaIMJpxdDgCC5Ixhhgm_BgsMBUKMSnUKTgLYZvsggi1ALtlD80YXWdiU8Lamjh6CwfX9BHaXfSmjI3rYWfjm6tgYYKtYLrbtHj42YRJrJ2H3hVuInRjGxvUmn2S530wIcAv21YwWNPBCfne9JsLcFKbNtjL33kOXu_vXlaPaP388LRarlFJJY6IGybzquaMYs5LYqwiXOSFoKSoalFKlZU5LagQQhFWccYyJa0UhVFUEk5rdg6uZ-7g3cdoQ9RbN_o-vdQMM6oyzlmeXHR2ld6F4G2tB990xu81wXpqWM8N69Sw_mlYH1KIzaGQzP3G-j_0P6lvplZ_7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3032845539</pqid></control><display><type>article</type><title>An automatic feature point extraction method based on laser vision for robotic multi-layer multi-pass weld seam tracking</title><source>SpringerLink Journals</source><creator>Xu, Fengjing ; He, Lei ; Hou, Zhen ; Xiao, Runquan ; Zuo, Tianyi ; Li, Jiacheng ; Xu, Yanling ; Zhang, Huajun</creator><creatorcontrib>Xu, Fengjing ; He, Lei ; Hou, Zhen ; Xiao, Runquan ; Zuo, Tianyi ; Li, Jiacheng ; Xu, Yanling ; Zhang, Huajun</creatorcontrib><description>Laser vision-based seam tracking has been an important research hotspot in modern welding manufacturing. However, severe noise interference during welding and the complex contour curves of filling welds hinder the development of high-precision seam tracking in multi-layer multi-pass (MLMP) welding. To solve this problem, a point distribution model (PDM) has been implemented to express the laser stripe pattern of MLMP welds. Then, an end-to-end feature point extraction algorithm is proposed. The “coarse-to-fine” positioning strategy achieves global correlation and local constraints. The low-resolution heatmap regression and coordinate offset regression balance the efficiency and precision, where the backbone is improved with attention mechanisms. Furthermore, the soft coordinate loss and the Gaussian mixture model were combined to improve the generalization performance. Based on the model, an automatic ROI extraction method and output points filtering are implemented to complete the whole tracking process. In experiments, the proposed method achieved good tracking performance even under strong noise, with the mean absolute error (MAE) being controlled within 0.3 mm. The feature point extraction method shows advantages in both precision and stability, laying a foundation for advanced robotic MLMP welding production.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-024-13245-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Computer-Aided Engineering (CAD ; Engineering ; Industrial and Production Engineering ; Laser beam welding ; Lasers ; Mechanical Engineering ; Media Management ; Multilayers ; Original Article ; Probabilistic models ; Seam tracking ; Seam welds</subject><ispartof>International journal of advanced manufacturing technology, 2024-04, Vol.131 (12), p.5941-5960</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5a379df532055c1ae81569b621bdf6c784c92b2666813d533487e76ba827152f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-024-13245-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-024-13245-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Fengjing</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Hou, Zhen</creatorcontrib><creatorcontrib>Xiao, Runquan</creatorcontrib><creatorcontrib>Zuo, Tianyi</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Xu, Yanling</creatorcontrib><creatorcontrib>Zhang, Huajun</creatorcontrib><title>An automatic feature point extraction method based on laser vision for robotic multi-layer multi-pass weld seam tracking</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Laser vision-based seam tracking has been an important research hotspot in modern welding manufacturing. However, severe noise interference during welding and the complex contour curves of filling welds hinder the development of high-precision seam tracking in multi-layer multi-pass (MLMP) welding. To solve this problem, a point distribution model (PDM) has been implemented to express the laser stripe pattern of MLMP welds. Then, an end-to-end feature point extraction algorithm is proposed. The “coarse-to-fine” positioning strategy achieves global correlation and local constraints. The low-resolution heatmap regression and coordinate offset regression balance the efficiency and precision, where the backbone is improved with attention mechanisms. Furthermore, the soft coordinate loss and the Gaussian mixture model were combined to improve the generalization performance. Based on the model, an automatic ROI extraction method and output points filtering are implemented to complete the whole tracking process. In experiments, the proposed method achieved good tracking performance even under strong noise, with the mean absolute error (MAE) being controlled within 0.3 mm. The feature point extraction method shows advantages in both precision and stability, laying a foundation for advanced robotic MLMP welding production.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Laser beam welding</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Multilayers</subject><subject>Original Article</subject><subject>Probabilistic models</subject><subject>Seam tracking</subject><subject>Seam welds</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA62gezaPLYfAFA250HdI2HTu2TU1SnZlfb2oFd67uvZxzvgsHgCuCbwjG8jZgTCRGmGaIMJpxdDgCC5Ixhhgm_BgsMBUKMSnUKTgLYZvsggi1ALtlD80YXWdiU8Lamjh6CwfX9BHaXfSmjI3rYWfjm6tgYYKtYLrbtHj42YRJrJ2H3hVuInRjGxvUmn2S530wIcAv21YwWNPBCfne9JsLcFKbNtjL33kOXu_vXlaPaP388LRarlFJJY6IGybzquaMYs5LYqwiXOSFoKSoalFKlZU5LagQQhFWccYyJa0UhVFUEk5rdg6uZ-7g3cdoQ9RbN_o-vdQMM6oyzlmeXHR2ld6F4G2tB990xu81wXpqWM8N69Sw_mlYH1KIzaGQzP3G-j_0P6lvplZ_7g</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xu, Fengjing</creator><creator>He, Lei</creator><creator>Hou, Zhen</creator><creator>Xiao, Runquan</creator><creator>Zuo, Tianyi</creator><creator>Li, Jiacheng</creator><creator>Xu, Yanling</creator><creator>Zhang, Huajun</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>An automatic feature point extraction method based on laser vision for robotic multi-layer multi-pass weld seam tracking</title><author>Xu, Fengjing ; He, Lei ; Hou, Zhen ; Xiao, Runquan ; Zuo, Tianyi ; Li, Jiacheng ; Xu, Yanling ; Zhang, Huajun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5a379df532055c1ae81569b621bdf6c784c92b2666813d533487e76ba827152f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Laser beam welding</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Multilayers</topic><topic>Original Article</topic><topic>Probabilistic models</topic><topic>Seam tracking</topic><topic>Seam welds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fengjing</creatorcontrib><creatorcontrib>He, Lei</creatorcontrib><creatorcontrib>Hou, Zhen</creatorcontrib><creatorcontrib>Xiao, Runquan</creatorcontrib><creatorcontrib>Zuo, Tianyi</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Xu, Yanling</creatorcontrib><creatorcontrib>Zhang, Huajun</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Fengjing</au><au>He, Lei</au><au>Hou, Zhen</au><au>Xiao, Runquan</au><au>Zuo, Tianyi</au><au>Li, Jiacheng</au><au>Xu, Yanling</au><au>Zhang, Huajun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic feature point extraction method based on laser vision for robotic multi-layer multi-pass weld seam tracking</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>131</volume><issue>12</issue><spage>5941</spage><epage>5960</epage><pages>5941-5960</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Laser vision-based seam tracking has been an important research hotspot in modern welding manufacturing. However, severe noise interference during welding and the complex contour curves of filling welds hinder the development of high-precision seam tracking in multi-layer multi-pass (MLMP) welding. To solve this problem, a point distribution model (PDM) has been implemented to express the laser stripe pattern of MLMP welds. Then, an end-to-end feature point extraction algorithm is proposed. The “coarse-to-fine” positioning strategy achieves global correlation and local constraints. The low-resolution heatmap regression and coordinate offset regression balance the efficiency and precision, where the backbone is improved with attention mechanisms. Furthermore, the soft coordinate loss and the Gaussian mixture model were combined to improve the generalization performance. Based on the model, an automatic ROI extraction method and output points filtering are implemented to complete the whole tracking process. In experiments, the proposed method achieved good tracking performance even under strong noise, with the mean absolute error (MAE) being controlled within 0.3 mm. The feature point extraction method shows advantages in both precision and stability, laying a foundation for advanced robotic MLMP welding production.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-024-13245-z</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-04, Vol.131 (12), p.5941-5960
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3032845539
source SpringerLink Journals
subjects Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Laser beam welding
Lasers
Mechanical Engineering
Media Management
Multilayers
Original Article
Probabilistic models
Seam tracking
Seam welds
title An automatic feature point extraction method based on laser vision for robotic multi-layer multi-pass weld seam tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20feature%20point%20extraction%20method%20based%20on%20laser%20vision%20for%20robotic%20multi-layer%20multi-pass%20weld%20seam%20tracking&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Xu,%20Fengjing&rft.date=2024-04-01&rft.volume=131&rft.issue=12&rft.spage=5941&rft.epage=5960&rft.pages=5941-5960&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-024-13245-z&rft_dat=%3Cproquest_cross%3E3032845539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3032845539&rft_id=info:pmid/&rfr_iscdi=true