Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries (Adv. Mater. 14/2024)
Lithium Metal Batteries Lithium metal anodes exhibit over 400 Wh kg−1 energy density based on conversion chemistry and are being prioritized as the next generation of energy storage devices. In article number 2311687 by Shaohua Guo and co‐workers, various organic molecules, including polymer, fluori...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-04, Vol.36 (14), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Sun, Yu Li, Jingchang Xu, Sheng Zhou, Haoshen Guo, Shaohua |
description | Lithium Metal Batteries
Lithium metal anodes exhibit over 400 Wh kg−1 energy density based on conversion chemistry and are being prioritized as the next generation of energy storage devices. In article number 2311687 by Shaohua Guo and co‐workers, various organic molecules, including polymer, fluorinated molecules, and organosulfur, are summarized, and insights into how to construct the corresponding elastic, fluorine‐rich, and organosulfur‐containing solid electrolyte interphases (SEIs) are provided. This review offers a design guideline for constructing organic molecule‐derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs. |
doi_str_mv | 10.1002/adma.202470102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031743741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031743741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1572-cb635ab29083b481f3d2be3fc2653e9f78ab19c7a6084cb770bc6997ddc5bbf23</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltigSHp2U7ieCylQKVWSHzMke04bao0LrZD1X9PqiIYmU6ne96704PQNYGYANCRLDcypkATDgToCRqQlJIoAZGeogEIlkYiS_JzdOH9GgBEBtkAuYVtjO4a6fC0XdatMa5ulzjYnXQlfrWq8wG_2aYu8bQHg7PNPhg8a4Nx25X0BlfW4XkdVnW3wQsTZIPvZeintfH4dlx-xXgh-zbGJBkdvru7RGeVbLy5-qlD9PE4fZ88R_OXp9lkPI80STmNtMpYKhUVkDOV5KRiJVWGVZpmKTOi4rlURGguM8gTrTgHpTMheFnqVKmKsiG6Oe7dOvvZGR-Kte1c258sGDDCE8YT0lPxkdLOeu9MVWxdvZFuXxAoDl6Lg9fi12sfEMfArm7M_h-6GD8sxn_Zb1Vme3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031743741</pqid></control><display><type>article</type><title>Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries (Adv. Mater. 14/2024)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Yu ; Li, Jingchang ; Xu, Sheng ; Zhou, Haoshen ; Guo, Shaohua</creator><creatorcontrib>Sun, Yu ; Li, Jingchang ; Xu, Sheng ; Zhou, Haoshen ; Guo, Shaohua</creatorcontrib><description>Lithium Metal Batteries
Lithium metal anodes exhibit over 400 Wh kg−1 energy density based on conversion chemistry and are being prioritized as the next generation of energy storage devices. In article number 2311687 by Shaohua Guo and co‐workers, various organic molecules, including polymer, fluorinated molecules, and organosulfur, are summarized, and insights into how to construct the corresponding elastic, fluorine‐rich, and organosulfur‐containing solid electrolyte interphases (SEIs) are provided. This review offers a design guideline for constructing organic molecule‐derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202470102</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Energy storage ; Fluorine ; Lithium batteries ; lithium‐metal batteries ; Organic chemistry ; organic molecule ; polymer ; solid electrolyte interphase ; Solid electrolytes</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (14), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202470102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202470102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Li, Jingchang</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><creatorcontrib>Guo, Shaohua</creatorcontrib><title>Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries (Adv. Mater. 14/2024)</title><title>Advanced materials (Weinheim)</title><description>Lithium Metal Batteries
Lithium metal anodes exhibit over 400 Wh kg−1 energy density based on conversion chemistry and are being prioritized as the next generation of energy storage devices. In article number 2311687 by Shaohua Guo and co‐workers, various organic molecules, including polymer, fluorinated molecules, and organosulfur, are summarized, and insights into how to construct the corresponding elastic, fluorine‐rich, and organosulfur‐containing solid electrolyte interphases (SEIs) are provided. This review offers a design guideline for constructing organic molecule‐derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs.</description><subject>Energy storage</subject><subject>Fluorine</subject><subject>Lithium batteries</subject><subject>lithium‐metal batteries</subject><subject>Organic chemistry</subject><subject>organic molecule</subject><subject>polymer</subject><subject>solid electrolyte interphase</subject><subject>Solid electrolytes</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltigSHp2U7ieCylQKVWSHzMke04bao0LrZD1X9PqiIYmU6ne96704PQNYGYANCRLDcypkATDgToCRqQlJIoAZGeogEIlkYiS_JzdOH9GgBEBtkAuYVtjO4a6fC0XdatMa5ulzjYnXQlfrWq8wG_2aYu8bQHg7PNPhg8a4Nx25X0BlfW4XkdVnW3wQsTZIPvZeintfH4dlx-xXgh-zbGJBkdvru7RGeVbLy5-qlD9PE4fZ88R_OXp9lkPI80STmNtMpYKhUVkDOV5KRiJVWGVZpmKTOi4rlURGguM8gTrTgHpTMheFnqVKmKsiG6Oe7dOvvZGR-Kte1c258sGDDCE8YT0lPxkdLOeu9MVWxdvZFuXxAoDl6Lg9fi12sfEMfArm7M_h-6GD8sxn_Zb1Vme3o</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Sun, Yu</creator><creator>Li, Jingchang</creator><creator>Xu, Sheng</creator><creator>Zhou, Haoshen</creator><creator>Guo, Shaohua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240401</creationdate><title>Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries (Adv. Mater. 14/2024)</title><author>Sun, Yu ; Li, Jingchang ; Xu, Sheng ; Zhou, Haoshen ; Guo, Shaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1572-cb635ab29083b481f3d2be3fc2653e9f78ab19c7a6084cb770bc6997ddc5bbf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy storage</topic><topic>Fluorine</topic><topic>Lithium batteries</topic><topic>lithium‐metal batteries</topic><topic>Organic chemistry</topic><topic>organic molecule</topic><topic>polymer</topic><topic>solid electrolyte interphase</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Li, Jingchang</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Zhou, Haoshen</creatorcontrib><creatorcontrib>Guo, Shaohua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yu</au><au>Li, Jingchang</au><au>Xu, Sheng</au><au>Zhou, Haoshen</au><au>Guo, Shaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries (Adv. Mater. 14/2024)</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>36</volume><issue>14</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lithium Metal Batteries
Lithium metal anodes exhibit over 400 Wh kg−1 energy density based on conversion chemistry and are being prioritized as the next generation of energy storage devices. In article number 2311687 by Shaohua Guo and co‐workers, various organic molecules, including polymer, fluorinated molecules, and organosulfur, are summarized, and insights into how to construct the corresponding elastic, fluorine‐rich, and organosulfur‐containing solid electrolyte interphases (SEIs) are provided. This review offers a design guideline for constructing organic molecule‐derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202470102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-04, Vol.36 (14), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_3031743741 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Energy storage Fluorine Lithium batteries lithium‐metal batteries Organic chemistry organic molecule polymer solid electrolyte interphase Solid electrolytes |
title | Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries (Adv. Mater. 14/2024) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Engineering%20toward%20Robust%20Solid%20Electrolyte%20Interphase%20for%20Lithium%20Metal%20Batteries%20(Adv.%20Mater.%2014/2024)&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Sun,%20Yu&rft.date=2024-04-01&rft.volume=36&rft.issue=14&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202470102&rft_dat=%3Cproquest_cross%3E3031743741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031743741&rft_id=info:pmid/&rfr_iscdi=true |