Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation

The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University computational mathematics and cybernetics 2024, Vol.48 (1), p.20-30
Hauptverfasser: Netesov, S. V., Shcheglov, A. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 20
container_title Moscow University computational mathematics and cybernetics
container_volume 48
creator Netesov, S. V.
Shcheglov, A. Yu
description The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.
doi_str_mv 10.3103/S0278641924010072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031733647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031733647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1132-8c4e3017a06ba7ec13f8a1241950b4718563d62d68bd06df777f23228dd5cff3</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqXwAewssQ74kdjusiqvSIVWaveRE9ttqtQOdlLUv8dRESwQq7uYMzO6A8AtRvcUI_qwQoQLluIJSRFGiJMzMMITmiYiJeIcjAY5GfRLcBXCDqGMESpGoM_tQfug4dK7stF7aJyHEr4729RWSw_fnNINdAYuXds3squdhY9HK_d1FeBn3W1ht9VwutFw1fm-6nqvBzq3qj7UqpdNgNIquIgt7U_CNbgwUdE333cM1s9P69lrMl-85LPpPKkwpiQRVaopwlwiVkquK0yNkJjELzJUphyLjFHFiGKiVIgpwzk3hBIilMoqY-gY3J1iW-8-eh26Yud6b2NjQRHFnFKW8kjhE1V5F4LXpmh9vZf-WGBUDOMWf8aNHnLyhMjajfa_yf-bvgDGX3u9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031733647</pqid></control><display><type>article</type><title>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Netesov, S. V. ; Shcheglov, A. Yu</creator><creatorcontrib>Netesov, S. V. ; Shcheglov, A. Yu</creatorcontrib><description>The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.</description><identifier>ISSN: 0278-6419</identifier><identifier>EISSN: 1934-8428</identifier><identifier>DOI: 10.3103/S0278641924010072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamic models ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Nonlinear equations</subject><ispartof>Moscow University computational mathematics and cybernetics, 2024, Vol.48 (1), p.20-30</ispartof><rights>Allerton Press, Inc. 2024</rights><rights>Allerton Press, Inc. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1132-8c4e3017a06ba7ec13f8a1241950b4718563d62d68bd06df777f23228dd5cff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0278641924010072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0278641924010072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Netesov, S. V.</creatorcontrib><creatorcontrib>Shcheglov, A. Yu</creatorcontrib><title>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</title><title>Moscow University computational mathematics and cybernetics</title><addtitle>MoscowUniv.Comput.Math.Cybern</addtitle><description>The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.</description><subject>Dynamic models</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><issn>0278-6419</issn><issn>1934-8428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURC0EEqXwAewssQ74kdjusiqvSIVWaveRE9ttqtQOdlLUv8dRESwQq7uYMzO6A8AtRvcUI_qwQoQLluIJSRFGiJMzMMITmiYiJeIcjAY5GfRLcBXCDqGMESpGoM_tQfug4dK7stF7aJyHEr4729RWSw_fnNINdAYuXds3squdhY9HK_d1FeBn3W1ht9VwutFw1fm-6nqvBzq3qj7UqpdNgNIquIgt7U_CNbgwUdE333cM1s9P69lrMl-85LPpPKkwpiQRVaopwlwiVkquK0yNkJjELzJUphyLjFHFiGKiVIgpwzk3hBIilMoqY-gY3J1iW-8-eh26Yud6b2NjQRHFnFKW8kjhE1V5F4LXpmh9vZf-WGBUDOMWf8aNHnLyhMjajfa_yf-bvgDGX3u9</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Netesov, S. V.</creator><creator>Shcheglov, A. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</title><author>Netesov, S. V. ; Shcheglov, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1132-8c4e3017a06ba7ec13f8a1241950b4718563d62d68bd06df777f23228dd5cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamic models</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Netesov, S. V.</creatorcontrib><creatorcontrib>Shcheglov, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University computational mathematics and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Netesov, S. V.</au><au>Shcheglov, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</atitle><jtitle>Moscow University computational mathematics and cybernetics</jtitle><stitle>MoscowUniv.Comput.Math.Cybern</stitle><date>2024</date><risdate>2024</risdate><volume>48</volume><issue>1</issue><spage>20</spage><epage>30</epage><pages>20-30</pages><issn>0278-6419</issn><eissn>1934-8428</eissn><abstract>The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0278641924010072</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-6419
ispartof Moscow University computational mathematics and cybernetics, 2024, Vol.48 (1), p.20-30
issn 0278-6419
1934-8428
language eng
recordid cdi_proquest_journals_3031733647
source SpringerLink Journals - AutoHoldings
subjects Dynamic models
Inverse problems
Mathematics
Mathematics and Statistics
Nonlinear equations
title Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Problem%20for%20a%20Nonlinear%20Model%20of%20Population%20Dynamics%20with%20the%20Age%20Structure%20of%20Individuals%20and%20Overpopulation&rft.jtitle=Moscow%20University%20computational%20mathematics%20and%20cybernetics&rft.au=Netesov,%20S.%20V.&rft.date=2024&rft.volume=48&rft.issue=1&rft.spage=20&rft.epage=30&rft.pages=20-30&rft.issn=0278-6419&rft.eissn=1934-8428&rft_id=info:doi/10.3103/S0278641924010072&rft_dat=%3Cproquest_cross%3E3031733647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031733647&rft_id=info:pmid/&rfr_iscdi=true