Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation
The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population s...
Gespeichert in:
Veröffentlicht in: | Moscow University computational mathematics and cybernetics 2024, Vol.48 (1), p.20-30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | Moscow University computational mathematics and cybernetics |
container_volume | 48 |
creator | Netesov, S. V. Shcheglov, A. Yu |
description | The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established. |
doi_str_mv | 10.3103/S0278641924010072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031733647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031733647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1132-8c4e3017a06ba7ec13f8a1241950b4718563d62d68bd06df777f23228dd5cff3</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqXwAewssQ74kdjusiqvSIVWaveRE9ttqtQOdlLUv8dRESwQq7uYMzO6A8AtRvcUI_qwQoQLluIJSRFGiJMzMMITmiYiJeIcjAY5GfRLcBXCDqGMESpGoM_tQfug4dK7stF7aJyHEr4729RWSw_fnNINdAYuXds3squdhY9HK_d1FeBn3W1ht9VwutFw1fm-6nqvBzq3qj7UqpdNgNIquIgt7U_CNbgwUdE333cM1s9P69lrMl-85LPpPKkwpiQRVaopwlwiVkquK0yNkJjELzJUphyLjFHFiGKiVIgpwzk3hBIilMoqY-gY3J1iW-8-eh26Yud6b2NjQRHFnFKW8kjhE1V5F4LXpmh9vZf-WGBUDOMWf8aNHnLyhMjajfa_yf-bvgDGX3u9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031733647</pqid></control><display><type>article</type><title>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Netesov, S. V. ; Shcheglov, A. Yu</creator><creatorcontrib>Netesov, S. V. ; Shcheglov, A. Yu</creatorcontrib><description>The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.</description><identifier>ISSN: 0278-6419</identifier><identifier>EISSN: 1934-8428</identifier><identifier>DOI: 10.3103/S0278641924010072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamic models ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Nonlinear equations</subject><ispartof>Moscow University computational mathematics and cybernetics, 2024, Vol.48 (1), p.20-30</ispartof><rights>Allerton Press, Inc. 2024</rights><rights>Allerton Press, Inc. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1132-8c4e3017a06ba7ec13f8a1241950b4718563d62d68bd06df777f23228dd5cff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0278641924010072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0278641924010072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Netesov, S. V.</creatorcontrib><creatorcontrib>Shcheglov, A. Yu</creatorcontrib><title>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</title><title>Moscow University computational mathematics and cybernetics</title><addtitle>MoscowUniv.Comput.Math.Cybern</addtitle><description>The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.</description><subject>Dynamic models</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><issn>0278-6419</issn><issn>1934-8428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURC0EEqXwAewssQ74kdjusiqvSIVWaveRE9ttqtQOdlLUv8dRESwQq7uYMzO6A8AtRvcUI_qwQoQLluIJSRFGiJMzMMITmiYiJeIcjAY5GfRLcBXCDqGMESpGoM_tQfug4dK7stF7aJyHEr4729RWSw_fnNINdAYuXds3squdhY9HK_d1FeBn3W1ht9VwutFw1fm-6nqvBzq3qj7UqpdNgNIquIgt7U_CNbgwUdE333cM1s9P69lrMl-85LPpPKkwpiQRVaopwlwiVkquK0yNkJjELzJUphyLjFHFiGKiVIgpwzk3hBIilMoqY-gY3J1iW-8-eh26Yud6b2NjQRHFnFKW8kjhE1V5F4LXpmh9vZf-WGBUDOMWf8aNHnLyhMjajfa_yf-bvgDGX3u9</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Netesov, S. V.</creator><creator>Shcheglov, A. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</title><author>Netesov, S. V. ; Shcheglov, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1132-8c4e3017a06ba7ec13f8a1241950b4718563d62d68bd06df777f23228dd5cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamic models</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Netesov, S. V.</creatorcontrib><creatorcontrib>Shcheglov, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University computational mathematics and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Netesov, S. V.</au><au>Shcheglov, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation</atitle><jtitle>Moscow University computational mathematics and cybernetics</jtitle><stitle>MoscowUniv.Comput.Math.Cybern</stitle><date>2024</date><risdate>2024</risdate><volume>48</volume><issue>1</issue><spage>20</spage><epage>30</epage><pages>20-30</pages><issn>0278-6419</issn><eissn>1934-8428</eissn><abstract>The authors consider the inverse problem of restoring the coefficient in a nonlinear equation of a dynamic model of a homogeneous biological population of organisms structured according to age. The model allows for the dependence of parameters of the vital activity of individuals on the population size. Some coefficients of the model are nonlocal and have an integral structure. Conditions for the uniqueness of the solution of the inverse problem are established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0278641924010072</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6419 |
ispartof | Moscow University computational mathematics and cybernetics, 2024, Vol.48 (1), p.20-30 |
issn | 0278-6419 1934-8428 |
language | eng |
recordid | cdi_proquest_journals_3031733647 |
source | SpringerLink Journals - AutoHoldings |
subjects | Dynamic models Inverse problems Mathematics Mathematics and Statistics Nonlinear equations |
title | Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Problem%20for%20a%20Nonlinear%20Model%20of%20Population%20Dynamics%20with%20the%20Age%20Structure%20of%20Individuals%20and%20Overpopulation&rft.jtitle=Moscow%20University%20computational%20mathematics%20and%20cybernetics&rft.au=Netesov,%20S.%20V.&rft.date=2024&rft.volume=48&rft.issue=1&rft.spage=20&rft.epage=30&rft.pages=20-30&rft.issn=0278-6419&rft.eissn=1934-8428&rft_id=info:doi/10.3103/S0278641924010072&rft_dat=%3Cproquest_cross%3E3031733647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031733647&rft_id=info:pmid/&rfr_iscdi=true |