A smart hybrid memory scheduling approach using neural models

Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2024-04, Vol.67 (4), p.149102, Article 149102
Hauptverfasser: Zhen, Yanjie, Zhang, Huijun, Deng, Yongheng, Chen, Weining, Gao, Wei, Ren, Ju, Chen, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 149102
container_title Science China. Information sciences
container_volume 67
creator Zhen, Yanjie
Zhang, Huijun
Deng, Yongheng
Chen, Weining
Gao, Wei
Ren, Ju
Chen, Yu
description Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show that SmartS improves hybrid memory effectiveness significantly. It also reduces the cost of neural models to allow their practical deployment in real-world hybrid, representing a substantial step towards practical neural-model-based scheduling.
doi_str_mv 10.1007/s11432-023-3925-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031715428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031715428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-21a558691ecfdb64d0f9176a4bf89c86149694e2e39644f49b8f7cb1b47eb2943</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gLeA52gmyebj4KEUtULBi4K3sNlN-sF-1KR76L83ywqexLnMDLzvO8OD0C3Qe6BUPSQAwRmhjBNuWEHYBZqBloaAAXOZZ6kEUZx_XqNFSgeai3PKlJ6hxyVObRlPeHd2cV_j1rd9PONU7Xw9NPtui8vjMfZltcNDGtfOD7FscNvXvkk36CqUTfKLnz5HH89P76s12by9vK6WG1IxI0-EQVkU-R_wVaidFDUNBpQshQvaVFqCMNIIzzw3UoggjNNBVQ6cUN4xI_gc3U25-ZWvwaeTPfRD7PJJyykHBYVg-j-V0FqpMQsmVRX7lKIP9hj3GcHZArUjTjvhtBmnHXFalj1s8qSs7bY-_ib_bfoGHAt1nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031488774</pqid></control><display><type>article</type><title>A smart hybrid memory scheduling approach using neural models</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhen, Yanjie ; Zhang, Huijun ; Deng, Yongheng ; Chen, Weining ; Gao, Wei ; Ren, Ju ; Chen, Yu</creator><creatorcontrib>Zhen, Yanjie ; Zhang, Huijun ; Deng, Yongheng ; Chen, Weining ; Gao, Wei ; Ren, Ju ; Chen, Yu</creatorcontrib><description>Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show that SmartS improves hybrid memory effectiveness significantly. It also reduces the cost of neural models to allow their practical deployment in real-world hybrid, representing a substantial step towards practical neural-model-based scheduling.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-023-3925-2</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Clustering ; Computer Science ; Information Systems and Communication Service ; Letter ; Scheduling</subject><ispartof>Science China. Information sciences, 2024-04, Vol.67 (4), p.149102, Article 149102</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-21a558691ecfdb64d0f9176a4bf89c86149694e2e39644f49b8f7cb1b47eb2943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-023-3925-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11432-023-3925-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Zhen, Yanjie</creatorcontrib><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Deng, Yongheng</creatorcontrib><creatorcontrib>Chen, Weining</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Ren, Ju</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>A smart hybrid memory scheduling approach using neural models</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show that SmartS improves hybrid memory effectiveness significantly. It also reduces the cost of neural models to allow their practical deployment in real-world hybrid, representing a substantial step towards practical neural-model-based scheduling.</description><subject>Clustering</subject><subject>Computer Science</subject><subject>Information Systems and Communication Service</subject><subject>Letter</subject><subject>Scheduling</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGp_gLeA52gmyebj4KEUtULBi4K3sNlN-sF-1KR76L83ywqexLnMDLzvO8OD0C3Qe6BUPSQAwRmhjBNuWEHYBZqBloaAAXOZZ6kEUZx_XqNFSgeai3PKlJ6hxyVObRlPeHd2cV_j1rd9PONU7Xw9NPtui8vjMfZltcNDGtfOD7FscNvXvkk36CqUTfKLnz5HH89P76s12by9vK6WG1IxI0-EQVkU-R_wVaidFDUNBpQshQvaVFqCMNIIzzw3UoggjNNBVQ6cUN4xI_gc3U25-ZWvwaeTPfRD7PJJyykHBYVg-j-V0FqpMQsmVRX7lKIP9hj3GcHZArUjTjvhtBmnHXFalj1s8qSs7bY-_ib_bfoGHAt1nQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhen, Yanjie</creator><creator>Zhang, Huijun</creator><creator>Deng, Yongheng</creator><creator>Chen, Weining</creator><creator>Gao, Wei</creator><creator>Ren, Ju</creator><creator>Chen, Yu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240401</creationdate><title>A smart hybrid memory scheduling approach using neural models</title><author>Zhen, Yanjie ; Zhang, Huijun ; Deng, Yongheng ; Chen, Weining ; Gao, Wei ; Ren, Ju ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-21a558691ecfdb64d0f9176a4bf89c86149694e2e39644f49b8f7cb1b47eb2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clustering</topic><topic>Computer Science</topic><topic>Information Systems and Communication Service</topic><topic>Letter</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhen, Yanjie</creatorcontrib><creatorcontrib>Zhang, Huijun</creatorcontrib><creatorcontrib>Deng, Yongheng</creatorcontrib><creatorcontrib>Chen, Weining</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Ren, Ju</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhen, Yanjie</au><au>Zhang, Huijun</au><au>Deng, Yongheng</au><au>Chen, Weining</au><au>Gao, Wei</au><au>Ren, Ju</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smart hybrid memory scheduling approach using neural models</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>67</volume><issue>4</issue><spage>149102</spage><pages>149102-</pages><artnum>149102</artnum><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show that SmartS improves hybrid memory effectiveness significantly. It also reduces the cost of neural models to allow their practical deployment in real-world hybrid, representing a substantial step towards practical neural-model-based scheduling.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-023-3925-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2024-04, Vol.67 (4), p.149102, Article 149102
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_journals_3031715428
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Clustering
Computer Science
Information Systems and Communication Service
Letter
Scheduling
title A smart hybrid memory scheduling approach using neural models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smart%20hybrid%20memory%20scheduling%20approach%20using%20neural%20models&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Zhen,%20Yanjie&rft.date=2024-04-01&rft.volume=67&rft.issue=4&rft.spage=149102&rft.pages=149102-&rft.artnum=149102&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-023-3925-2&rft_dat=%3Cproquest_cross%3E3031715428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031488774&rft_id=info:pmid/&rfr_iscdi=true