A smart hybrid memory scheduling approach using neural models

Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2024-04, Vol.67 (4), p.149102, Article 149102
Hauptverfasser: Zhen, Yanjie, Zhang, Huijun, Deng, Yongheng, Chen, Weining, Gao, Wei, Ren, Ju, Chen, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conclusion SmartS is a novel solution for hybrid memory scheduling using neural models. It proposes a novel collective-page prediction approach, effectively reducing training and inference costs. It also proposes a clustering-based approach to address the class explosion problem. Experiments show that SmartS improves hybrid memory effectiveness significantly. It also reduces the cost of neural models to allow their practical deployment in real-world hybrid, representing a substantial step towards practical neural-model-based scheduling.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-023-3925-2