TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions
The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO 2 nanofibers using the photo-deposition method....
Gespeichert in:
Veröffentlicht in: | Nano research 2024-05, Vol.17 (5), p.3844-3852 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3852 |
---|---|
container_issue | 5 |
container_start_page | 3844 |
container_title | Nano research |
container_volume | 17 |
creator | Li, Wencui Ren, Yu Xie, Zean Wang, Yipeng Zhang, Hang Peng, Dianxiang Shen, Hengfang Shi, Hongfei Cai, Jiaxin Wang, Peng Zhang, Tongxin Zhao, Zhen |
description | The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO
2
nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g
Cu
−1
·hr
−1
productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO
2
in the mixed phase of anatase and rutile significantly increases the Cu
+
/Cu
0
ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu
1
site promotes the generation of active O species from H
2
O
2
dissociation on Cu
2
O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH
4
, thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH
3
OH and CH
3
OOH, and then the generated CH
3
OH is further oxidized to HOCH
2
OOH. |
doi_str_mv | 10.1007/s12274-023-6356-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031471825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031471825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhQdRsP48gLuA69HcZCbpLKX4B4IbXYc0c9OmTJMxScU-gO9tahVX3s29cL9zDpyqugB6BZTK6wSMyaamjNeCt6LuDqoJdN20pmUOf29gzXF1ktKKUsGgmU6qzxf3zIjXPlg3x1inzTiGmLEnJowjxu_XqGN2ZkBidNbDNuVEbIhk6RbLYUvQWmcc-kzWmJfaFyz4d4zJBU9yIDMg4WO7QK8zJrLxfXFdu2GX4HuXC5XOqiOrh4TnP_u0er27fZk91E_P94-zm6facBC57kAYQN42jErTmdbYqe2p1HYuBJ-yFkUDLZ3LjnMJyLQGpHPBei6bnguU_LS63PuOMbxtMGW1CpvoS6TilEMjobgUCvaUiSGliFaN0a113Cqgate22retSttq17bqiobtNamwfoHxz_l_0ReX_4SH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031471825</pqid></control><display><type>article</type><title>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</title><source>SpringerLink (Online service)</source><creator>Li, Wencui ; Ren, Yu ; Xie, Zean ; Wang, Yipeng ; Zhang, Hang ; Peng, Dianxiang ; Shen, Hengfang ; Shi, Hongfei ; Cai, Jiaxin ; Wang, Peng ; Zhang, Tongxin ; Zhao, Zhen</creator><creatorcontrib>Li, Wencui ; Ren, Yu ; Xie, Zean ; Wang, Yipeng ; Zhang, Hang ; Peng, Dianxiang ; Shen, Hengfang ; Shi, Hongfei ; Cai, Jiaxin ; Wang, Peng ; Zhang, Tongxin ; Zhao, Zhen</creatorcontrib><description>The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO
2
nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g
Cu
−1
·hr
−1
productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO
2
in the mixed phase of anatase and rutile significantly increases the Cu
+
/Cu
0
ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu
1
site promotes the generation of active O species from H
2
O
2
dissociation on Cu
2
O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH
4
, thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH
3
OH and CH
3
OOH, and then the generated CH
3
OH is further oxidized to HOCH
2
OOH.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-6356-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anatase ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Catalytic activity ; Catalytic converters ; Chemistry and Materials Science ; Condensed Matter Physics ; Copper ; Copper converters ; Density functional theory ; Hydrogen bonds ; Hydrogen peroxide ; Materials Science ; Methane ; Methyl radicals ; Nanofibers ; Nanoparticles ; Nanotechnology ; Oxidation ; Research Article ; Titanium dioxide</subject><ispartof>Nano research, 2024-05, Vol.17 (5), p.3844-3852</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</citedby><cites>FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-6356-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-6356-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Wencui</creatorcontrib><creatorcontrib>Ren, Yu</creatorcontrib><creatorcontrib>Xie, Zean</creatorcontrib><creatorcontrib>Wang, Yipeng</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Peng, Dianxiang</creatorcontrib><creatorcontrib>Shen, Hengfang</creatorcontrib><creatorcontrib>Shi, Hongfei</creatorcontrib><creatorcontrib>Cai, Jiaxin</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Tongxin</creatorcontrib><creatorcontrib>Zhao, Zhen</creatorcontrib><title>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO
2
nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g
Cu
−1
·hr
−1
productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO
2
in the mixed phase of anatase and rutile significantly increases the Cu
+
/Cu
0
ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu
1
site promotes the generation of active O species from H
2
O
2
dissociation on Cu
2
O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH
4
, thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH
3
OH and CH
3
OOH, and then the generated CH
3
OH is further oxidized to HOCH
2
OOH.</description><subject>Anatase</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Density functional theory</subject><subject>Hydrogen bonds</subject><subject>Hydrogen peroxide</subject><subject>Materials Science</subject><subject>Methane</subject><subject>Methyl radicals</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Research Article</subject><subject>Titanium dioxide</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhQdRsP48gLuA69HcZCbpLKX4B4IbXYc0c9OmTJMxScU-gO9tahVX3s29cL9zDpyqugB6BZTK6wSMyaamjNeCt6LuDqoJdN20pmUOf29gzXF1ktKKUsGgmU6qzxf3zIjXPlg3x1inzTiGmLEnJowjxu_XqGN2ZkBidNbDNuVEbIhk6RbLYUvQWmcc-kzWmJfaFyz4d4zJBU9yIDMg4WO7QK8zJrLxfXFdu2GX4HuXC5XOqiOrh4TnP_u0er27fZk91E_P94-zm6facBC57kAYQN42jErTmdbYqe2p1HYuBJ-yFkUDLZ3LjnMJyLQGpHPBei6bnguU_LS63PuOMbxtMGW1CpvoS6TilEMjobgUCvaUiSGliFaN0a113Cqgate22retSttq17bqiobtNamwfoHxz_l_0ReX_4SH</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Wencui</creator><creator>Ren, Yu</creator><creator>Xie, Zean</creator><creator>Wang, Yipeng</creator><creator>Zhang, Hang</creator><creator>Peng, Dianxiang</creator><creator>Shen, Hengfang</creator><creator>Shi, Hongfei</creator><creator>Cai, Jiaxin</creator><creator>Wang, Peng</creator><creator>Zhang, Tongxin</creator><creator>Zhao, Zhen</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240501</creationdate><title>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</title><author>Li, Wencui ; Ren, Yu ; Xie, Zean ; Wang, Yipeng ; Zhang, Hang ; Peng, Dianxiang ; Shen, Hengfang ; Shi, Hongfei ; Cai, Jiaxin ; Wang, Peng ; Zhang, Tongxin ; Zhao, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anatase</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Density functional theory</topic><topic>Hydrogen bonds</topic><topic>Hydrogen peroxide</topic><topic>Materials Science</topic><topic>Methane</topic><topic>Methyl radicals</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Research Article</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wencui</creatorcontrib><creatorcontrib>Ren, Yu</creatorcontrib><creatorcontrib>Xie, Zean</creatorcontrib><creatorcontrib>Wang, Yipeng</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Peng, Dianxiang</creatorcontrib><creatorcontrib>Shen, Hengfang</creatorcontrib><creatorcontrib>Shi, Hongfei</creatorcontrib><creatorcontrib>Cai, Jiaxin</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Tongxin</creatorcontrib><creatorcontrib>Zhao, Zhen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wencui</au><au>Ren, Yu</au><au>Xie, Zean</au><au>Wang, Yipeng</au><au>Zhang, Hang</au><au>Peng, Dianxiang</au><au>Shen, Hengfang</au><au>Shi, Hongfei</au><au>Cai, Jiaxin</au><au>Wang, Peng</au><au>Zhang, Tongxin</au><au>Zhao, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>17</volume><issue>5</issue><spage>3844</spage><epage>3852</epage><pages>3844-3852</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO
2
nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g
Cu
−1
·hr
−1
productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO
2
in the mixed phase of anatase and rutile significantly increases the Cu
+
/Cu
0
ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu
1
site promotes the generation of active O species from H
2
O
2
dissociation on Cu
2
O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH
4
, thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH
3
OH and CH
3
OOH, and then the generated CH
3
OH is further oxidized to HOCH
2
OOH.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-6356-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2024-05, Vol.17 (5), p.3844-3852 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_3031471825 |
source | SpringerLink (Online service) |
subjects | Anatase Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Catalysis Catalysts Catalytic activity Catalytic converters Chemistry and Materials Science Condensed Matter Physics Copper Copper converters Density functional theory Hydrogen bonds Hydrogen peroxide Materials Science Methane Methyl radicals Nanofibers Nanoparticles Nanotechnology Oxidation Research Article Titanium dioxide |
title | TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20nanofiber-supported%20copper%20nanoparticle%20catalysts%20for%20highly%20efficient%20methane%20conversion%20to%20C1%20oxygenates%20under%20mild%20conditions&rft.jtitle=Nano%20research&rft.au=Li,%20Wencui&rft.date=2024-05-01&rft.volume=17&rft.issue=5&rft.spage=3844&rft.epage=3852&rft.pages=3844-3852&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-6356-9&rft_dat=%3Cproquest_cross%3E3031471825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031471825&rft_id=info:pmid/&rfr_iscdi=true |