TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions

The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO 2 nanofibers using the photo-deposition method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2024-05, Vol.17 (5), p.3844-3852
Hauptverfasser: Li, Wencui, Ren, Yu, Xie, Zean, Wang, Yipeng, Zhang, Hang, Peng, Dianxiang, Shen, Hengfang, Shi, Hongfei, Cai, Jiaxin, Wang, Peng, Zhang, Tongxin, Zhao, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3852
container_issue 5
container_start_page 3844
container_title Nano research
container_volume 17
creator Li, Wencui
Ren, Yu
Xie, Zean
Wang, Yipeng
Zhang, Hang
Peng, Dianxiang
Shen, Hengfang
Shi, Hongfei
Cai, Jiaxin
Wang, Peng
Zhang, Tongxin
Zhao, Zhen
description The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO 2 nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g Cu −1 ·hr −1 productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO 2 in the mixed phase of anatase and rutile significantly increases the Cu + /Cu 0 ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu 1 site promotes the generation of active O species from H 2 O 2 dissociation on Cu 2 O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH 4 , thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH 3 OH and CH 3 OOH, and then the generated CH 3 OH is further oxidized to HOCH 2 OOH.
doi_str_mv 10.1007/s12274-023-6356-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031471825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031471825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhQdRsP48gLuA69HcZCbpLKX4B4IbXYc0c9OmTJMxScU-gO9tahVX3s29cL9zDpyqugB6BZTK6wSMyaamjNeCt6LuDqoJdN20pmUOf29gzXF1ktKKUsGgmU6qzxf3zIjXPlg3x1inzTiGmLEnJowjxu_XqGN2ZkBidNbDNuVEbIhk6RbLYUvQWmcc-kzWmJfaFyz4d4zJBU9yIDMg4WO7QK8zJrLxfXFdu2GX4HuXC5XOqiOrh4TnP_u0er27fZk91E_P94-zm6facBC57kAYQN42jErTmdbYqe2p1HYuBJ-yFkUDLZ3LjnMJyLQGpHPBei6bnguU_LS63PuOMbxtMGW1CpvoS6TilEMjobgUCvaUiSGliFaN0a113Cqgate22retSttq17bqiobtNamwfoHxz_l_0ReX_4SH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031471825</pqid></control><display><type>article</type><title>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</title><source>SpringerLink (Online service)</source><creator>Li, Wencui ; Ren, Yu ; Xie, Zean ; Wang, Yipeng ; Zhang, Hang ; Peng, Dianxiang ; Shen, Hengfang ; Shi, Hongfei ; Cai, Jiaxin ; Wang, Peng ; Zhang, Tongxin ; Zhao, Zhen</creator><creatorcontrib>Li, Wencui ; Ren, Yu ; Xie, Zean ; Wang, Yipeng ; Zhang, Hang ; Peng, Dianxiang ; Shen, Hengfang ; Shi, Hongfei ; Cai, Jiaxin ; Wang, Peng ; Zhang, Tongxin ; Zhao, Zhen</creatorcontrib><description>The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO 2 nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g Cu −1 ·hr −1 productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO 2 in the mixed phase of anatase and rutile significantly increases the Cu + /Cu 0 ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu 1 site promotes the generation of active O species from H 2 O 2 dissociation on Cu 2 O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH 4 , thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH 3 OH and CH 3 OOH, and then the generated CH 3 OH is further oxidized to HOCH 2 OOH.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-6356-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anatase ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Catalytic activity ; Catalytic converters ; Chemistry and Materials Science ; Condensed Matter Physics ; Copper ; Copper converters ; Density functional theory ; Hydrogen bonds ; Hydrogen peroxide ; Materials Science ; Methane ; Methyl radicals ; Nanofibers ; Nanoparticles ; Nanotechnology ; Oxidation ; Research Article ; Titanium dioxide</subject><ispartof>Nano research, 2024-05, Vol.17 (5), p.3844-3852</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</citedby><cites>FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-6356-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-6356-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Wencui</creatorcontrib><creatorcontrib>Ren, Yu</creatorcontrib><creatorcontrib>Xie, Zean</creatorcontrib><creatorcontrib>Wang, Yipeng</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Peng, Dianxiang</creatorcontrib><creatorcontrib>Shen, Hengfang</creatorcontrib><creatorcontrib>Shi, Hongfei</creatorcontrib><creatorcontrib>Cai, Jiaxin</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Tongxin</creatorcontrib><creatorcontrib>Zhao, Zhen</creatorcontrib><title>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO 2 nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g Cu −1 ·hr −1 productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO 2 in the mixed phase of anatase and rutile significantly increases the Cu + /Cu 0 ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu 1 site promotes the generation of active O species from H 2 O 2 dissociation on Cu 2 O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH 4 , thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH 3 OH and CH 3 OOH, and then the generated CH 3 OH is further oxidized to HOCH 2 OOH.</description><subject>Anatase</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper converters</subject><subject>Density functional theory</subject><subject>Hydrogen bonds</subject><subject>Hydrogen peroxide</subject><subject>Materials Science</subject><subject>Methane</subject><subject>Methyl radicals</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Research Article</subject><subject>Titanium dioxide</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhQdRsP48gLuA69HcZCbpLKX4B4IbXYc0c9OmTJMxScU-gO9tahVX3s29cL9zDpyqugB6BZTK6wSMyaamjNeCt6LuDqoJdN20pmUOf29gzXF1ktKKUsGgmU6qzxf3zIjXPlg3x1inzTiGmLEnJowjxu_XqGN2ZkBidNbDNuVEbIhk6RbLYUvQWmcc-kzWmJfaFyz4d4zJBU9yIDMg4WO7QK8zJrLxfXFdu2GX4HuXC5XOqiOrh4TnP_u0er27fZk91E_P94-zm6facBC57kAYQN42jErTmdbYqe2p1HYuBJ-yFkUDLZ3LjnMJyLQGpHPBei6bnguU_LS63PuOMbxtMGW1CpvoS6TilEMjobgUCvaUiSGliFaN0a113Cqgate22retSttq17bqiobtNamwfoHxz_l_0ReX_4SH</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Wencui</creator><creator>Ren, Yu</creator><creator>Xie, Zean</creator><creator>Wang, Yipeng</creator><creator>Zhang, Hang</creator><creator>Peng, Dianxiang</creator><creator>Shen, Hengfang</creator><creator>Shi, Hongfei</creator><creator>Cai, Jiaxin</creator><creator>Wang, Peng</creator><creator>Zhang, Tongxin</creator><creator>Zhao, Zhen</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20240501</creationdate><title>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</title><author>Li, Wencui ; Ren, Yu ; Xie, Zean ; Wang, Yipeng ; Zhang, Hang ; Peng, Dianxiang ; Shen, Hengfang ; Shi, Hongfei ; Cai, Jiaxin ; Wang, Peng ; Zhang, Tongxin ; Zhao, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-916c1e354207c9c5cf8fd07afb663825e64150b793371e2aa1e0b62d374d36e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anatase</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper converters</topic><topic>Density functional theory</topic><topic>Hydrogen bonds</topic><topic>Hydrogen peroxide</topic><topic>Materials Science</topic><topic>Methane</topic><topic>Methyl radicals</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Research Article</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wencui</creatorcontrib><creatorcontrib>Ren, Yu</creatorcontrib><creatorcontrib>Xie, Zean</creatorcontrib><creatorcontrib>Wang, Yipeng</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Peng, Dianxiang</creatorcontrib><creatorcontrib>Shen, Hengfang</creatorcontrib><creatorcontrib>Shi, Hongfei</creatorcontrib><creatorcontrib>Cai, Jiaxin</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhang, Tongxin</creatorcontrib><creatorcontrib>Zhao, Zhen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wencui</au><au>Ren, Yu</au><au>Xie, Zean</au><au>Wang, Yipeng</au><au>Zhang, Hang</au><au>Peng, Dianxiang</au><au>Shen, Hengfang</au><au>Shi, Hongfei</au><au>Cai, Jiaxin</au><au>Wang, Peng</au><au>Zhang, Tongxin</au><au>Zhao, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>17</volume><issue>5</issue><spage>3844</spage><epage>3852</epage><pages>3844-3852</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The selective oxidation of methane under mild conditions remains the “Holy Grail of Catalysis”. The key to activating methane and inhibiting over-oxidation of target oxygenates lies in designing active centers. Copper nanoparticles were loaded onto TiO 2 nanofibers using the photo-deposition method. The resulting catalysts were found to effectively convert methane into C1 oxygenated products under mild conditions. Compared with previously reported catalysts, it delivers a superior performance of up to 2510.7 mmol·g Cu −1 ·hr −1 productivity with a selectivity of around 100% at 80 °C for 5 min. Microstructure characterizations and density functional theory (DFT) calculations indicate that TiO 2 in the mixed phase of anatase and rutile significantly increases the Cu + /Cu 0 ratio of the supported Cu species, and this ratio is linearly related to the formation rate of oxygen-containing species. The Cu 1 site promotes the generation of active O species from H 2 O 2 dissociation on Cu 2 O (111). These active O species reduce the energy barrier for breaking the C–H bond of CH 4 , thus boosting the catalytic activity. The methane conversion mechanism was proposed as a methyl radical pathway to form CH 3 OH and CH 3 OOH, and then the generated CH 3 OH is further oxidized to HOCH 2 OOH.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-6356-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2024-05, Vol.17 (5), p.3844-3852
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_3031471825
source SpringerLink (Online service)
subjects Anatase
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysis
Catalysts
Catalytic activity
Catalytic converters
Chemistry and Materials Science
Condensed Matter Physics
Copper
Copper converters
Density functional theory
Hydrogen bonds
Hydrogen peroxide
Materials Science
Methane
Methyl radicals
Nanofibers
Nanoparticles
Nanotechnology
Oxidation
Research Article
Titanium dioxide
title TiO2 nanofiber-supported copper nanoparticle catalysts for highly efficient methane conversion to C1 oxygenates under mild conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20nanofiber-supported%20copper%20nanoparticle%20catalysts%20for%20highly%20efficient%20methane%20conversion%20to%20C1%20oxygenates%20under%20mild%20conditions&rft.jtitle=Nano%20research&rft.au=Li,%20Wencui&rft.date=2024-05-01&rft.volume=17&rft.issue=5&rft.spage=3844&rft.epage=3852&rft.pages=3844-3852&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-6356-9&rft_dat=%3Cproquest_cross%3E3031471825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031471825&rft_id=info:pmid/&rfr_iscdi=true