SFPANet: Separation and fusion pyramid attention network for crowd counting
Crowd counting methods have become increasingly mature. However, the problem of dramatic scale variation still exists. For this reason, we propose an efficient separated and fused pyramid attention network, which can extract multiscale features on channels and space and greatly alleviate the problem...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-04, Vol.83 (13), p.38839-38855 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38855 |
---|---|
container_issue | 13 |
container_start_page | 38839 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Xiong, Li Yan Deng, Huizi Yi, Hu Huang, Peng Zhou, Qiyun |
description | Crowd counting methods have become increasingly mature. However, the problem of dramatic scale variation still exists. For this reason, we propose an efficient separated and fused pyramid attention network, which can extract multiscale features on channels and space and greatly alleviate the problem of dramatic scale variation. First, in order to extract the rich features on the channel, we design a separated and fused channel attention module, which is composed of two 3x3 convolution layers, a separated attention module, and a SE module. Second, we design a spatial contextual feature fusion module to fully extract multiscale features in spatial dimensions. Finally, we conduct comparison experiments with state-of-the-art methods on several challenging datasets, including the ShanghaiTech, UCF_CC_50, and WorldExpo’10 datasets. The experimental results show our method outperforms most of the state-of-the-art methods. We conduct ablation experiments on the ShanghaiTech Part A and Part B datasets to verify the importance of each submodule. |
doi_str_mv | 10.1007/s11042-023-17219-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031431252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031431252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-81feafdb664d2aa1c25c747017cbe088a87c6c71657146f777346d237ec9dc5b3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Ap4Dn1bxkd9_WWylWxaJC9RzSbFJabbImu5T-vWlX0JOnN4-ZeW8YQi6BXQNjeBMBWM4zxkUGyGGUiSMygAJFhmk9_oNPyVmMa8agLHg-IE_z6ev42bS3dG4aFVS78o4qV1PbxT1sdkFtVjVVbWvcgXSm3frwQa0PVAe_ran2XaLc8pycWPUZzcXPHJL36d3b5CGbvdw_TsazTHNkbVaBNcrWi7LMa64UaF5ozJEB6oVhVaUq1KXGFBAhLy0iirysuUCjR7UuFmJIrvq7TfBfnYmtXPsuuPRSCiYgF8ALnlS8V6WQMQZjZRNWGxV2Epjclyb70mQqTR5KkyKZRG-KSeyWJvye_sf1DVcnbvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031431252</pqid></control><display><type>article</type><title>SFPANet: Separation and fusion pyramid attention network for crowd counting</title><source>SpringerLink</source><creator>Xiong, Li Yan ; Deng, Huizi ; Yi, Hu ; Huang, Peng ; Zhou, Qiyun</creator><creatorcontrib>Xiong, Li Yan ; Deng, Huizi ; Yi, Hu ; Huang, Peng ; Zhou, Qiyun</creatorcontrib><description>Crowd counting methods have become increasingly mature. However, the problem of dramatic scale variation still exists. For this reason, we propose an efficient separated and fused pyramid attention network, which can extract multiscale features on channels and space and greatly alleviate the problem of dramatic scale variation. First, in order to extract the rich features on the channel, we design a separated and fused channel attention module, which is composed of two 3x3 convolution layers, a separated attention module, and a SE module. Second, we design a spatial contextual feature fusion module to fully extract multiscale features in spatial dimensions. Finally, we conduct comparison experiments with state-of-the-art methods on several challenging datasets, including the ShanghaiTech, UCF_CC_50, and WorldExpo’10 datasets. The experimental results show our method outperforms most of the state-of-the-art methods. We conduct ablation experiments on the ShanghaiTech Part A and Part B datasets to verify the importance of each submodule.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17219-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ablation ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Modules ; Multimedia Information Systems ; Special Purpose and Application-Based Systems ; State of the art</subject><ispartof>Multimedia tools and applications, 2024-04, Vol.83 (13), p.38839-38855</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-81feafdb664d2aa1c25c747017cbe088a87c6c71657146f777346d237ec9dc5b3</cites><orcidid>0009-0004-9999-921X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17219-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17219-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiong, Li Yan</creatorcontrib><creatorcontrib>Deng, Huizi</creatorcontrib><creatorcontrib>Yi, Hu</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Zhou, Qiyun</creatorcontrib><title>SFPANet: Separation and fusion pyramid attention network for crowd counting</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Crowd counting methods have become increasingly mature. However, the problem of dramatic scale variation still exists. For this reason, we propose an efficient separated and fused pyramid attention network, which can extract multiscale features on channels and space and greatly alleviate the problem of dramatic scale variation. First, in order to extract the rich features on the channel, we design a separated and fused channel attention module, which is composed of two 3x3 convolution layers, a separated attention module, and a SE module. Second, we design a spatial contextual feature fusion module to fully extract multiscale features in spatial dimensions. Finally, we conduct comparison experiments with state-of-the-art methods on several challenging datasets, including the ShanghaiTech, UCF_CC_50, and WorldExpo’10 datasets. The experimental results show our method outperforms most of the state-of-the-art methods. We conduct ablation experiments on the ShanghaiTech Part A and Part B datasets to verify the importance of each submodule.</description><subject>Ablation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>State of the art</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Ap4Dn1bxkd9_WWylWxaJC9RzSbFJabbImu5T-vWlX0JOnN4-ZeW8YQi6BXQNjeBMBWM4zxkUGyGGUiSMygAJFhmk9_oNPyVmMa8agLHg-IE_z6ev42bS3dG4aFVS78o4qV1PbxT1sdkFtVjVVbWvcgXSm3frwQa0PVAe_ran2XaLc8pycWPUZzcXPHJL36d3b5CGbvdw_TsazTHNkbVaBNcrWi7LMa64UaF5ozJEB6oVhVaUq1KXGFBAhLy0iirysuUCjR7UuFmJIrvq7TfBfnYmtXPsuuPRSCiYgF8ALnlS8V6WQMQZjZRNWGxV2Epjclyb70mQqTR5KkyKZRG-KSeyWJvye_sf1DVcnbvQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xiong, Li Yan</creator><creator>Deng, Huizi</creator><creator>Yi, Hu</creator><creator>Huang, Peng</creator><creator>Zhou, Qiyun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0004-9999-921X</orcidid></search><sort><creationdate>20240401</creationdate><title>SFPANet: Separation and fusion pyramid attention network for crowd counting</title><author>Xiong, Li Yan ; Deng, Huizi ; Yi, Hu ; Huang, Peng ; Zhou, Qiyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-81feafdb664d2aa1c25c747017cbe088a87c6c71657146f777346d237ec9dc5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Li Yan</creatorcontrib><creatorcontrib>Deng, Huizi</creatorcontrib><creatorcontrib>Yi, Hu</creatorcontrib><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Zhou, Qiyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Li Yan</au><au>Deng, Huizi</au><au>Yi, Hu</au><au>Huang, Peng</au><au>Zhou, Qiyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SFPANet: Separation and fusion pyramid attention network for crowd counting</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>83</volume><issue>13</issue><spage>38839</spage><epage>38855</epage><pages>38839-38855</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Crowd counting methods have become increasingly mature. However, the problem of dramatic scale variation still exists. For this reason, we propose an efficient separated and fused pyramid attention network, which can extract multiscale features on channels and space and greatly alleviate the problem of dramatic scale variation. First, in order to extract the rich features on the channel, we design a separated and fused channel attention module, which is composed of two 3x3 convolution layers, a separated attention module, and a SE module. Second, we design a spatial contextual feature fusion module to fully extract multiscale features in spatial dimensions. Finally, we conduct comparison experiments with state-of-the-art methods on several challenging datasets, including the ShanghaiTech, UCF_CC_50, and WorldExpo’10 datasets. The experimental results show our method outperforms most of the state-of-the-art methods. We conduct ablation experiments on the ShanghaiTech Part A and Part B datasets to verify the importance of each submodule.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17219-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0004-9999-921X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-04, Vol.83 (13), p.38839-38855 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3031431252 |
source | SpringerLink |
subjects | Ablation Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Modules Multimedia Information Systems Special Purpose and Application-Based Systems State of the art |
title | SFPANet: Separation and fusion pyramid attention network for crowd counting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SFPANet:%20Separation%20and%20fusion%20pyramid%20attention%20network%20for%20crowd%20counting&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Xiong,%20Li%20Yan&rft.date=2024-04-01&rft.volume=83&rft.issue=13&rft.spage=38839&rft.epage=38855&rft.pages=38839-38855&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17219-3&rft_dat=%3Cproquest_cross%3E3031431252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031431252&rft_id=info:pmid/&rfr_iscdi=true |