Optimizing Offload Performance in Heterogeneous MPSoCs

Heterogeneous multi-core architectures combine a few "host" cores, optimized for single-thread performance, with many small energy-efficient "accelerator" cores for data-parallel processing, on a single chip. Offloading a computation to the many-core acceleration fabric introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Colagrande, Luca, Benini, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Colagrande, Luca
Benini, Luca
description Heterogeneous multi-core architectures combine a few "host" cores, optimized for single-thread performance, with many small energy-efficient "accelerator" cores for data-parallel processing, on a single chip. Offloading a computation to the many-core acceleration fabric introduces a communication and synchronization cost which reduces the speedup attainable on the accelerator, particularly for small and fine-grained parallel tasks. We demonstrate that by co-designing the hardware and offload routines, we can increase the speedup of an offloaded DAXPY kernel by as much as 47.9%. Furthermore, we show that it is possible to accurately model the runtime of an offloaded application, accounting for the offload overheads, with as low as 1% MAPE error, enabling optimal offload decisions under offload execution time constraints.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3031410881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031410881</sourcerecordid><originalsourceid>FETCH-proquest_journals_30314108813</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScC7m0NXtRukgLupegJyWlzam5LD69Dj6A0z98_4ZkQkpeqFKIHclDmBhjoj6JqpIZqbs12sW-rRtpZ8yM-kl78Ab9ot0DqHW0hQgeR3CAKdBrf8MmHMjW6DlA_uueHC_ne9MWq8dXghCHCZN3Xxokk7zkTCku_7s-z3M1NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031410881</pqid></control><display><type>article</type><title>Optimizing Offload Performance in Heterogeneous MPSoCs</title><source>Free E- Journals</source><creator>Colagrande, Luca ; Benini, Luca</creator><creatorcontrib>Colagrande, Luca ; Benini, Luca</creatorcontrib><description>Heterogeneous multi-core architectures combine a few "host" cores, optimized for single-thread performance, with many small energy-efficient "accelerator" cores for data-parallel processing, on a single chip. Offloading a computation to the many-core acceleration fabric introduces a communication and synchronization cost which reduces the speedup attainable on the accelerator, particularly for small and fine-grained parallel tasks. We demonstrate that by co-designing the hardware and offload routines, we can increase the speedup of an offloaded DAXPY kernel by as much as 47.9%. Furthermore, we show that it is possible to accurately model the runtime of an offloaded application, accounting for the offload overheads, with as low as 1% MAPE error, enabling optimal offload decisions under offload execution time constraints.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Optimization ; Parallel processing ; Synchronism</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Colagrande, Luca</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><title>Optimizing Offload Performance in Heterogeneous MPSoCs</title><title>arXiv.org</title><description>Heterogeneous multi-core architectures combine a few "host" cores, optimized for single-thread performance, with many small energy-efficient "accelerator" cores for data-parallel processing, on a single chip. Offloading a computation to the many-core acceleration fabric introduces a communication and synchronization cost which reduces the speedup attainable on the accelerator, particularly for small and fine-grained parallel tasks. We demonstrate that by co-designing the hardware and offload routines, we can increase the speedup of an offloaded DAXPY kernel by as much as 47.9%. Furthermore, we show that it is possible to accurately model the runtime of an offloaded application, accounting for the offload overheads, with as low as 1% MAPE error, enabling optimal offload decisions under offload execution time constraints.</description><subject>Optimization</subject><subject>Parallel processing</subject><subject>Synchronism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScC7m0NXtRukgLupegJyWlzam5LD69Dj6A0z98_4ZkQkpeqFKIHclDmBhjoj6JqpIZqbs12sW-rRtpZ8yM-kl78Ab9ot0DqHW0hQgeR3CAKdBrf8MmHMjW6DlA_uueHC_ne9MWq8dXghCHCZN3Xxokk7zkTCku_7s-z3M1NQ</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Colagrande, Luca</creator><creator>Benini, Luca</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240402</creationdate><title>Optimizing Offload Performance in Heterogeneous MPSoCs</title><author>Colagrande, Luca ; Benini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30314108813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Optimization</topic><topic>Parallel processing</topic><topic>Synchronism</topic><toplevel>online_resources</toplevel><creatorcontrib>Colagrande, Luca</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colagrande, Luca</au><au>Benini, Luca</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing Offload Performance in Heterogeneous MPSoCs</atitle><jtitle>arXiv.org</jtitle><date>2024-04-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Heterogeneous multi-core architectures combine a few "host" cores, optimized for single-thread performance, with many small energy-efficient "accelerator" cores for data-parallel processing, on a single chip. Offloading a computation to the many-core acceleration fabric introduces a communication and synchronization cost which reduces the speedup attainable on the accelerator, particularly for small and fine-grained parallel tasks. We demonstrate that by co-designing the hardware and offload routines, we can increase the speedup of an offloaded DAXPY kernel by as much as 47.9%. Furthermore, we show that it is possible to accurately model the runtime of an offloaded application, accounting for the offload overheads, with as low as 1% MAPE error, enabling optimal offload decisions under offload execution time constraints.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3031410881
source Free E- Journals
subjects Optimization
Parallel processing
Synchronism
title Optimizing Offload Performance in Heterogeneous MPSoCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20Offload%20Performance%20in%20Heterogeneous%20MPSoCs&rft.jtitle=arXiv.org&rft.au=Colagrande,%20Luca&rft.date=2024-04-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3031410881%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031410881&rft_id=info:pmid/&rfr_iscdi=true