SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery
Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy i...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Zhao, Chenao Guo, Dudu Shao, Chunfu Zhao, Ke Sun, Miao Shuai, Hongbo |
description | Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed. |
doi_str_mv | 10.1109/ACCESS.2024.3382245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031400881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10480425</ieee_id><doaj_id>oai_doaj_org_article_3d548c0676384a7ea392a14899a0c042</doaj_id><sourcerecordid>3031400881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e74bbc8961d6db892819e69dd16eafc6d87d73966dfe089a00b3b7c784676ce73</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRUKq_QA8Bz1uTTTYf3kr9KlQKVkVPIZvM1i3tpmbTQ_-9qVvEucwwzPPOJG-WXRI8JASrm9F4fD-fDwtcsCGlsihYeZSdFYSrnJaUH_-rT7OLrlviFDK1SnGWwdzEO4gf-edsOrtFI_TsA6CRtdtgIqBniF_eodoH9A5fjV0BejVhARElCGxsfIuaFiURWK2aBLzA2qc0h7Zr2gWarM0Cwu48O6nNqoOLQx5kbw_3r-OnfDp7nIxH09zSUsUcBKsqKxUnjrtKqkISBVw5RziY2nInhRNUce5qwFIZjCtaCSsk44JbEHSQTXpd581Sb0KzNmGnvWn0b8OHhTYh7p-hqSuZtDiBVDIjwFBVGMKkSrIWsyJpXfdam-C_t9BFvfTb0KbzNcWUsPSHkqQp2k_Z4LsuQP23lWC9t0f39ui9PfpgT6KueqoBgH8Ek2lzSX8AaqWJsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031400881</pqid></control><display><type>article</type><title>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Chenao ; Guo, Dudu ; Shao, Chunfu ; Zhao, Ke ; Sun, Miao ; Shuai, Hongbo</creator><creatorcontrib>Zhao, Chenao ; Guo, Dudu ; Shao, Chunfu ; Zhao, Ke ; Sun, Miao ; Shuai, Hongbo</creatorcontrib><description>Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3382245</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Attention Mechanism ; Computational modeling ; Computer networks ; Data models ; Data processing ; Feature extraction ; Formability ; Intelligent transportation systems ; ITS ; Object detection ; Remote sensing ; Satellite imagery ; Satellite images ; Satellite Remote Sensing Technology ; Satellites ; Small Targets ; Target detection ; Target tracking ; Task complexity ; Traffic planning ; Transportation planning ; Vehicle detection ; YOLO ; YOLOv8</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e74bbc8961d6db892819e69dd16eafc6d87d73966dfe089a00b3b7c784676ce73</cites><orcidid>0009-0001-2477-4890 ; 0009-0009-7356-5196 ; 0009-0000-9844-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10480425$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27616,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Zhao, Chenao</creatorcontrib><creatorcontrib>Guo, Dudu</creatorcontrib><creatorcontrib>Shao, Chunfu</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Sun, Miao</creatorcontrib><creatorcontrib>Shuai, Hongbo</creatorcontrib><title>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.</description><subject>Accuracy</subject><subject>Attention Mechanism</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>Object detection</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellite images</subject><subject>Satellite Remote Sensing Technology</subject><subject>Satellites</subject><subject>Small Targets</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>Task complexity</subject><subject>Traffic planning</subject><subject>Transportation planning</subject><subject>Vehicle detection</subject><subject>YOLO</subject><subject>YOLOv8</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRUKq_QA8Bz1uTTTYf3kr9KlQKVkVPIZvM1i3tpmbTQ_-9qVvEucwwzPPOJG-WXRI8JASrm9F4fD-fDwtcsCGlsihYeZSdFYSrnJaUH_-rT7OLrlviFDK1SnGWwdzEO4gf-edsOrtFI_TsA6CRtdtgIqBniF_eodoH9A5fjV0BejVhARElCGxsfIuaFiURWK2aBLzA2qc0h7Zr2gWarM0Cwu48O6nNqoOLQx5kbw_3r-OnfDp7nIxH09zSUsUcBKsqKxUnjrtKqkISBVw5RziY2nInhRNUce5qwFIZjCtaCSsk44JbEHSQTXpd581Sb0KzNmGnvWn0b8OHhTYh7p-hqSuZtDiBVDIjwFBVGMKkSrIWsyJpXfdam-C_t9BFvfTb0KbzNcWUsPSHkqQp2k_Z4LsuQP23lWC9t0f39ui9PfpgT6KueqoBgH8Ek2lzSX8AaqWJsg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhao, Chenao</creator><creator>Guo, Dudu</creator><creator>Shao, Chunfu</creator><creator>Zhao, Ke</creator><creator>Sun, Miao</creator><creator>Shuai, Hongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-2477-4890</orcidid><orcidid>https://orcid.org/0009-0009-7356-5196</orcidid><orcidid>https://orcid.org/0009-0000-9844-5451</orcidid></search><sort><creationdate>20240101</creationdate><title>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</title><author>Zhao, Chenao ; Guo, Dudu ; Shao, Chunfu ; Zhao, Ke ; Sun, Miao ; Shuai, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e74bbc8961d6db892819e69dd16eafc6d87d73966dfe089a00b3b7c784676ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Attention Mechanism</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>Object detection</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellite images</topic><topic>Satellite Remote Sensing Technology</topic><topic>Satellites</topic><topic>Small Targets</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>Task complexity</topic><topic>Traffic planning</topic><topic>Transportation planning</topic><topic>Vehicle detection</topic><topic>YOLO</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenao</creatorcontrib><creatorcontrib>Guo, Dudu</creatorcontrib><creatorcontrib>Shao, Chunfu</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Sun, Miao</creatorcontrib><creatorcontrib>Shuai, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenao</au><au>Guo, Dudu</au><au>Shao, Chunfu</au><au>Zhao, Ke</au><au>Sun, Miao</au><au>Shuai, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3382245</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-2477-4890</orcidid><orcidid>https://orcid.org/0009-0009-7356-5196</orcidid><orcidid>https://orcid.org/0009-0000-9844-5451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3031400881 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Attention Mechanism Computational modeling Computer networks Data models Data processing Feature extraction Formability Intelligent transportation systems ITS Object detection Remote sensing Satellite imagery Satellite images Satellite Remote Sensing Technology Satellites Small Targets Target detection Target tracking Task complexity Traffic planning Transportation planning Vehicle detection YOLO YOLOv8 |
title | SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SatDetX-YOLO:%20A%20More%20Accurate%20Method%20for%20Vehicle%20Target%20Detection%20in%20Satellite%20Remote%20Sensing%20Imagery&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Chenao&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3382245&rft_dat=%3Cproquest_cross%3E3031400881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031400881&rft_id=info:pmid/&rft_ieee_id=10480425&rft_doaj_id=oai_doaj_org_article_3d548c0676384a7ea392a14899a0c042&rfr_iscdi=true |