SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery

Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Zhao, Chenao, Guo, Dudu, Shao, Chunfu, Zhao, Ke, Sun, Miao, Shuai, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Zhao, Chenao
Guo, Dudu
Shao, Chunfu
Zhao, Ke
Sun, Miao
Shuai, Hongbo
description Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.
doi_str_mv 10.1109/ACCESS.2024.3382245
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031400881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10480425</ieee_id><doaj_id>oai_doaj_org_article_3d548c0676384a7ea392a14899a0c042</doaj_id><sourcerecordid>3031400881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e74bbc8961d6db892819e69dd16eafc6d87d73966dfe089a00b3b7c784676ce73</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRUKq_QA8Bz1uTTTYf3kr9KlQKVkVPIZvM1i3tpmbTQ_-9qVvEucwwzPPOJG-WXRI8JASrm9F4fD-fDwtcsCGlsihYeZSdFYSrnJaUH_-rT7OLrlviFDK1SnGWwdzEO4gf-edsOrtFI_TsA6CRtdtgIqBniF_eodoH9A5fjV0BejVhARElCGxsfIuaFiURWK2aBLzA2qc0h7Zr2gWarM0Cwu48O6nNqoOLQx5kbw_3r-OnfDp7nIxH09zSUsUcBKsqKxUnjrtKqkISBVw5RziY2nInhRNUce5qwFIZjCtaCSsk44JbEHSQTXpd581Sb0KzNmGnvWn0b8OHhTYh7p-hqSuZtDiBVDIjwFBVGMKkSrIWsyJpXfdam-C_t9BFvfTb0KbzNcWUsPSHkqQp2k_Z4LsuQP23lWC9t0f39ui9PfpgT6KueqoBgH8Ek2lzSX8AaqWJsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031400881</pqid></control><display><type>article</type><title>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Chenao ; Guo, Dudu ; Shao, Chunfu ; Zhao, Ke ; Sun, Miao ; Shuai, Hongbo</creator><creatorcontrib>Zhao, Chenao ; Guo, Dudu ; Shao, Chunfu ; Zhao, Ke ; Sun, Miao ; Shuai, Hongbo</creatorcontrib><description>Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3382245</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Attention Mechanism ; Computational modeling ; Computer networks ; Data models ; Data processing ; Feature extraction ; Formability ; Intelligent transportation systems ; ITS ; Object detection ; Remote sensing ; Satellite imagery ; Satellite images ; Satellite Remote Sensing Technology ; Satellites ; Small Targets ; Target detection ; Target tracking ; Task complexity ; Traffic planning ; Transportation planning ; Vehicle detection ; YOLO ; YOLOv8</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e74bbc8961d6db892819e69dd16eafc6d87d73966dfe089a00b3b7c784676ce73</cites><orcidid>0009-0001-2477-4890 ; 0009-0009-7356-5196 ; 0009-0000-9844-5451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10480425$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27616,27907,27908,54916</link.rule.ids></links><search><creatorcontrib>Zhao, Chenao</creatorcontrib><creatorcontrib>Guo, Dudu</creatorcontrib><creatorcontrib>Shao, Chunfu</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Sun, Miao</creatorcontrib><creatorcontrib>Shuai, Hongbo</creatorcontrib><title>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</title><title>IEEE access</title><addtitle>Access</addtitle><description>Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.</description><subject>Accuracy</subject><subject>Attention Mechanism</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>Object detection</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellite images</subject><subject>Satellite Remote Sensing Technology</subject><subject>Satellites</subject><subject>Small Targets</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>Task complexity</subject><subject>Traffic planning</subject><subject>Transportation planning</subject><subject>Vehicle detection</subject><subject>YOLO</subject><subject>YOLOv8</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRUKq_QA8Bz1uTTTYf3kr9KlQKVkVPIZvM1i3tpmbTQ_-9qVvEucwwzPPOJG-WXRI8JASrm9F4fD-fDwtcsCGlsihYeZSdFYSrnJaUH_-rT7OLrlviFDK1SnGWwdzEO4gf-edsOrtFI_TsA6CRtdtgIqBniF_eodoH9A5fjV0BejVhARElCGxsfIuaFiURWK2aBLzA2qc0h7Zr2gWarM0Cwu48O6nNqoOLQx5kbw_3r-OnfDp7nIxH09zSUsUcBKsqKxUnjrtKqkISBVw5RziY2nInhRNUce5qwFIZjCtaCSsk44JbEHSQTXpd581Sb0KzNmGnvWn0b8OHhTYh7p-hqSuZtDiBVDIjwFBVGMKkSrIWsyJpXfdam-C_t9BFvfTb0KbzNcWUsPSHkqQp2k_Z4LsuQP23lWC9t0f39ui9PfpgT6KueqoBgH8Ek2lzSX8AaqWJsg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhao, Chenao</creator><creator>Guo, Dudu</creator><creator>Shao, Chunfu</creator><creator>Zhao, Ke</creator><creator>Sun, Miao</creator><creator>Shuai, Hongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-2477-4890</orcidid><orcidid>https://orcid.org/0009-0009-7356-5196</orcidid><orcidid>https://orcid.org/0009-0000-9844-5451</orcidid></search><sort><creationdate>20240101</creationdate><title>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</title><author>Zhao, Chenao ; Guo, Dudu ; Shao, Chunfu ; Zhao, Ke ; Sun, Miao ; Shuai, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e74bbc8961d6db892819e69dd16eafc6d87d73966dfe089a00b3b7c784676ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Attention Mechanism</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>Object detection</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellite images</topic><topic>Satellite Remote Sensing Technology</topic><topic>Satellites</topic><topic>Small Targets</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>Task complexity</topic><topic>Traffic planning</topic><topic>Transportation planning</topic><topic>Vehicle detection</topic><topic>YOLO</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenao</creatorcontrib><creatorcontrib>Guo, Dudu</creatorcontrib><creatorcontrib>Shao, Chunfu</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Sun, Miao</creatorcontrib><creatorcontrib>Shuai, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenao</au><au>Guo, Dudu</au><au>Shao, Chunfu</au><au>Zhao, Ke</au><au>Sun, Miao</au><au>Shuai, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Satellite remote sensing technology significantly contributes to intelligent transportation by optimizing traffic planning via global perspectives and rich data, enhancing traffic efficiency and reducing environmental impact. However, current target detection models frequently exhibit low accuracy in vehicle detection tasks due to complex background interference in satellite imageries and a need for critical semantic information. To improve vehicle target detection accuracy, this study introduces SatDetX-YOLO, a vehicle detection model for satellite remote sensing images based on YOLOv8. The model involves reconstructing the backbone network with FasterNet for enhanced feature extraction, a redesigned decoupled head for improved computational efficiency and complex data processing, and incorporating the Deformable Attention Module (DAM) to increase sensitivity to small targets and feature correlation capture. Employing the Maximum Probabilistic Distance IoU (MPDIoU) loss function enhances adaptability and generalization to diverse vehicle targets. Experimental results demonstrate that under comparable FPS, SatDetX-YOLO's Precision (P), Recall (R), and Mean Average Precision (mAP) improved by 3.5%, 3.3%, and 3.2%, respectively. Despite a minor reduction in FPS, the model significantly enhances detection accuracy, striking a balance between accuracy and speed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3382245</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0001-2477-4890</orcidid><orcidid>https://orcid.org/0009-0009-7356-5196</orcidid><orcidid>https://orcid.org/0009-0000-9844-5451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3031400881
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Attention Mechanism
Computational modeling
Computer networks
Data models
Data processing
Feature extraction
Formability
Intelligent transportation systems
ITS
Object detection
Remote sensing
Satellite imagery
Satellite images
Satellite Remote Sensing Technology
Satellites
Small Targets
Target detection
Target tracking
Task complexity
Traffic planning
Transportation planning
Vehicle detection
YOLO
YOLOv8
title SatDetX-YOLO: A More Accurate Method for Vehicle Target Detection in Satellite Remote Sensing Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SatDetX-YOLO:%20A%20More%20Accurate%20Method%20for%20Vehicle%20Target%20Detection%20in%20Satellite%20Remote%20Sensing%20Imagery&rft.jtitle=IEEE%20access&rft.au=Zhao,%20Chenao&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3382245&rft_dat=%3Cproquest_cross%3E3031400881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031400881&rft_id=info:pmid/&rft_ieee_id=10480425&rft_doaj_id=oai_doaj_org_article_3d548c0676384a7ea392a14899a0c042&rfr_iscdi=true