Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide

Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-04, Vol.24 (7), p.9916-9924
Hauptverfasser: Zhang, Xiangxiang, Feng, Rui, Hou, Yulong, Fan, Lei, Kong, Fanling, Tan, Qiulin, Xiong, Jijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9924
container_issue 7
container_start_page 9916
container_title IEEE sensors journal
container_volume 24
creator Zhang, Xiangxiang
Feng, Rui
Hou, Yulong
Fan, Lei
Kong, Fanling
Tan, Qiulin
Xiong, Jijun
description Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high {Q} -factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.
doi_str_mv 10.1109/JSEN.2023.3344196
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3031399027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379448</ieee_id><sourcerecordid>3031399027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-87fa6d85fc324ebd2badd5b5f9f7db39d430aef29f49e2e4b3381e0137ffa50d3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKs_QHARcD01ycs0k2Ut1VbqB7RSdyHTvNQp05mazAj-ezvUhat3F-feB4eQa84GnDN997SYvAwEEzAAkJLr4Qnp8TTNEq5kdtplYIkE9XFOLmLcMsa1SlWPrJ6xsTvbYChsSafF5jNZ4m6PwTZtQLrAKtaB3tuIjtYVHZVl8lbayga6aPPYHDCks6rBTZccXdlv3LSFw0ty5m0Z8erv9sn7w2Q5nibz18fZeDRP1kIOmyRT3g5dlvo1CIm5E7l1Ls1Tr71yOWgngVn0QnupUaDMATKOjIPy3qbMQZ_cHnf3of5qMTZmW7ehOrw0wICD1kyoA8WP1DrUMQb0Zh-KnQ0_hjPT-TOdP9P5M3_-Dp2bY6dAxH88KC1lBr_a6m1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399027</pqid></control><display><type>article</type><title>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiangxiang ; Feng, Rui ; Hou, Yulong ; Fan, Lei ; Kong, Fanling ; Tan, Qiulin ; Xiong, Jijun</creator><creatorcontrib>Zhang, Xiangxiang ; Feng, Rui ; Hou, Yulong ; Fan, Lei ; Kong, Fanling ; Tan, Qiulin ; Xiong, Jijun</creatorcontrib><description>Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q} &lt;/tex-math&gt;&lt;/inline-formula&gt;-factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3344196</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>All-planar substrate integrated waveguide (AP-SIW) ; Antennas ; Ceramics ; Coplanar waveguides ; Drilling ; High temperature ; high-temperature sensor ; Metals ; metamaterial ; Metamaterials ; Monopole antennas ; Production costs ; Screen printing ; Sensitivity ; Sensor phenomena and characterization ; Sensors ; Substrate integrated waveguides ; Substrates ; Temperature ; Temperature measurement ; Temperature sensors ; Tolerances ; Transmission lines ; wireless passive</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.9916-9924</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-87fa6d85fc324ebd2badd5b5f9f7db39d430aef29f49e2e4b3381e0137ffa50d3</cites><orcidid>0000-0003-1560-9858 ; 0000-0001-8680-5851 ; 0009-0000-6507-3938 ; 0000-0001-7877-9278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiangxiang</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Hou, Yulong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Kong, Fanling</creatorcontrib><creatorcontrib>Tan, Qiulin</creatorcontrib><creatorcontrib>Xiong, Jijun</creatorcontrib><title>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q} &lt;/tex-math&gt;&lt;/inline-formula&gt;-factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.</description><subject>All-planar substrate integrated waveguide (AP-SIW)</subject><subject>Antennas</subject><subject>Ceramics</subject><subject>Coplanar waveguides</subject><subject>Drilling</subject><subject>High temperature</subject><subject>high-temperature sensor</subject><subject>Metals</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>Monopole antennas</subject><subject>Production costs</subject><subject>Screen printing</subject><subject>Sensitivity</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Substrate integrated waveguides</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Tolerances</subject><subject>Transmission lines</subject><subject>wireless passive</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKs_QHARcD01ycs0k2Ut1VbqB7RSdyHTvNQp05mazAj-ezvUhat3F-feB4eQa84GnDN997SYvAwEEzAAkJLr4Qnp8TTNEq5kdtplYIkE9XFOLmLcMsa1SlWPrJ6xsTvbYChsSafF5jNZ4m6PwTZtQLrAKtaB3tuIjtYVHZVl8lbayga6aPPYHDCks6rBTZccXdlv3LSFw0ty5m0Z8erv9sn7w2Q5nibz18fZeDRP1kIOmyRT3g5dlvo1CIm5E7l1Ls1Tr71yOWgngVn0QnupUaDMATKOjIPy3qbMQZ_cHnf3of5qMTZmW7ehOrw0wICD1kyoA8WP1DrUMQb0Zh-KnQ0_hjPT-TOdP9P5M3_-Dp2bY6dAxH88KC1lBr_a6m1q</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhang, Xiangxiang</creator><creator>Feng, Rui</creator><creator>Hou, Yulong</creator><creator>Fan, Lei</creator><creator>Kong, Fanling</creator><creator>Tan, Qiulin</creator><creator>Xiong, Jijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1560-9858</orcidid><orcidid>https://orcid.org/0000-0001-8680-5851</orcidid><orcidid>https://orcid.org/0009-0000-6507-3938</orcidid><orcidid>https://orcid.org/0000-0001-7877-9278</orcidid></search><sort><creationdate>20240401</creationdate><title>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</title><author>Zhang, Xiangxiang ; Feng, Rui ; Hou, Yulong ; Fan, Lei ; Kong, Fanling ; Tan, Qiulin ; Xiong, Jijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-87fa6d85fc324ebd2badd5b5f9f7db39d430aef29f49e2e4b3381e0137ffa50d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>All-planar substrate integrated waveguide (AP-SIW)</topic><topic>Antennas</topic><topic>Ceramics</topic><topic>Coplanar waveguides</topic><topic>Drilling</topic><topic>High temperature</topic><topic>high-temperature sensor</topic><topic>Metals</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>Monopole antennas</topic><topic>Production costs</topic><topic>Screen printing</topic><topic>Sensitivity</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Substrate integrated waveguides</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Tolerances</topic><topic>Transmission lines</topic><topic>wireless passive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangxiang</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Hou, Yulong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Kong, Fanling</creatorcontrib><creatorcontrib>Tan, Qiulin</creatorcontrib><creatorcontrib>Xiong, Jijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiangxiang</au><au>Feng, Rui</au><au>Hou, Yulong</au><au>Fan, Lei</au><au>Kong, Fanling</au><au>Tan, Qiulin</au><au>Xiong, Jijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>9916</spage><epage>9924</epage><pages>9916-9924</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q} &lt;/tex-math&gt;&lt;/inline-formula&gt;-factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3344196</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1560-9858</orcidid><orcidid>https://orcid.org/0000-0001-8680-5851</orcidid><orcidid>https://orcid.org/0009-0000-6507-3938</orcidid><orcidid>https://orcid.org/0000-0001-7877-9278</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-04, Vol.24 (7), p.9916-9924
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3031399027
source IEEE Electronic Library (IEL)
subjects All-planar substrate integrated waveguide (AP-SIW)
Antennas
Ceramics
Coplanar waveguides
Drilling
High temperature
high-temperature sensor
Metals
metamaterial
Metamaterials
Monopole antennas
Production costs
Screen printing
Sensitivity
Sensor phenomena and characterization
Sensors
Substrate integrated waveguides
Substrates
Temperature
Temperature measurement
Temperature sensors
Tolerances
Transmission lines
wireless passive
title Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamaterial%20High-Temperature%20Sensor%20Based%20on%20All-Planar%20Substrate%20Integrated%20Waveguide&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xiangxiang&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=9916&rft.epage=9924&rft.pages=9916-9924&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3344196&rft_dat=%3Cproquest_RIE%3E3031399027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031399027&rft_id=info:pmid/&rft_ieee_id=10379448&rfr_iscdi=true