Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide
Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral compo...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-04, Vol.24 (7), p.9916-9924 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9924 |
---|---|
container_issue | 7 |
container_start_page | 9916 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Zhang, Xiangxiang Feng, Rui Hou, Yulong Fan, Lei Kong, Fanling Tan, Qiulin Xiong, Jijun |
description | Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high {Q} -factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining. |
doi_str_mv | 10.1109/JSEN.2023.3344196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3031399027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379448</ieee_id><sourcerecordid>3031399027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-87fa6d85fc324ebd2badd5b5f9f7db39d430aef29f49e2e4b3381e0137ffa50d3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKs_QHARcD01ycs0k2Ut1VbqB7RSdyHTvNQp05mazAj-ezvUhat3F-feB4eQa84GnDN997SYvAwEEzAAkJLr4Qnp8TTNEq5kdtplYIkE9XFOLmLcMsa1SlWPrJ6xsTvbYChsSafF5jNZ4m6PwTZtQLrAKtaB3tuIjtYVHZVl8lbayga6aPPYHDCks6rBTZccXdlv3LSFw0ty5m0Z8erv9sn7w2Q5nibz18fZeDRP1kIOmyRT3g5dlvo1CIm5E7l1Ls1Tr71yOWgngVn0QnupUaDMATKOjIPy3qbMQZ_cHnf3of5qMTZmW7ehOrw0wICD1kyoA8WP1DrUMQb0Zh-KnQ0_hjPT-TOdP9P5M3_-Dp2bY6dAxH88KC1lBr_a6m1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399027</pqid></control><display><type>article</type><title>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiangxiang ; Feng, Rui ; Hou, Yulong ; Fan, Lei ; Kong, Fanling ; Tan, Qiulin ; Xiong, Jijun</creator><creatorcontrib>Zhang, Xiangxiang ; Feng, Rui ; Hou, Yulong ; Fan, Lei ; Kong, Fanling ; Tan, Qiulin ; Xiong, Jijun</creatorcontrib><description>Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3344196</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>All-planar substrate integrated waveguide (AP-SIW) ; Antennas ; Ceramics ; Coplanar waveguides ; Drilling ; High temperature ; high-temperature sensor ; Metals ; metamaterial ; Metamaterials ; Monopole antennas ; Production costs ; Screen printing ; Sensitivity ; Sensor phenomena and characterization ; Sensors ; Substrate integrated waveguides ; Substrates ; Temperature ; Temperature measurement ; Temperature sensors ; Tolerances ; Transmission lines ; wireless passive</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.9916-9924</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-87fa6d85fc324ebd2badd5b5f9f7db39d430aef29f49e2e4b3381e0137ffa50d3</cites><orcidid>0000-0003-1560-9858 ; 0000-0001-8680-5851 ; 0009-0000-6507-3938 ; 0000-0001-7877-9278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiangxiang</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Hou, Yulong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Kong, Fanling</creatorcontrib><creatorcontrib>Tan, Qiulin</creatorcontrib><creatorcontrib>Xiong, Jijun</creatorcontrib><title>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.</description><subject>All-planar substrate integrated waveguide (AP-SIW)</subject><subject>Antennas</subject><subject>Ceramics</subject><subject>Coplanar waveguides</subject><subject>Drilling</subject><subject>High temperature</subject><subject>high-temperature sensor</subject><subject>Metals</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>Monopole antennas</subject><subject>Production costs</subject><subject>Screen printing</subject><subject>Sensitivity</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Substrate integrated waveguides</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Tolerances</subject><subject>Transmission lines</subject><subject>wireless passive</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKs_QHARcD01ycs0k2Ut1VbqB7RSdyHTvNQp05mazAj-ezvUhat3F-feB4eQa84GnDN997SYvAwEEzAAkJLr4Qnp8TTNEq5kdtplYIkE9XFOLmLcMsa1SlWPrJ6xsTvbYChsSafF5jNZ4m6PwTZtQLrAKtaB3tuIjtYVHZVl8lbayga6aPPYHDCks6rBTZccXdlv3LSFw0ty5m0Z8erv9sn7w2Q5nibz18fZeDRP1kIOmyRT3g5dlvo1CIm5E7l1Ls1Tr71yOWgngVn0QnupUaDMATKOjIPy3qbMQZ_cHnf3of5qMTZmW7ehOrw0wICD1kyoA8WP1DrUMQb0Zh-KnQ0_hjPT-TOdP9P5M3_-Dp2bY6dAxH88KC1lBr_a6m1q</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhang, Xiangxiang</creator><creator>Feng, Rui</creator><creator>Hou, Yulong</creator><creator>Fan, Lei</creator><creator>Kong, Fanling</creator><creator>Tan, Qiulin</creator><creator>Xiong, Jijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1560-9858</orcidid><orcidid>https://orcid.org/0000-0001-8680-5851</orcidid><orcidid>https://orcid.org/0009-0000-6507-3938</orcidid><orcidid>https://orcid.org/0000-0001-7877-9278</orcidid></search><sort><creationdate>20240401</creationdate><title>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</title><author>Zhang, Xiangxiang ; Feng, Rui ; Hou, Yulong ; Fan, Lei ; Kong, Fanling ; Tan, Qiulin ; Xiong, Jijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-87fa6d85fc324ebd2badd5b5f9f7db39d430aef29f49e2e4b3381e0137ffa50d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>All-planar substrate integrated waveguide (AP-SIW)</topic><topic>Antennas</topic><topic>Ceramics</topic><topic>Coplanar waveguides</topic><topic>Drilling</topic><topic>High temperature</topic><topic>high-temperature sensor</topic><topic>Metals</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>Monopole antennas</topic><topic>Production costs</topic><topic>Screen printing</topic><topic>Sensitivity</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Substrate integrated waveguides</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Tolerances</topic><topic>Transmission lines</topic><topic>wireless passive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangxiang</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Hou, Yulong</creatorcontrib><creatorcontrib>Fan, Lei</creatorcontrib><creatorcontrib>Kong, Fanling</creatorcontrib><creatorcontrib>Tan, Qiulin</creatorcontrib><creatorcontrib>Xiong, Jijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiangxiang</au><au>Feng, Rui</au><au>Hou, Yulong</au><au>Fan, Lei</au><au>Kong, Fanling</au><au>Tan, Qiulin</au><au>Xiong, Jijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>9916</spage><epage>9924</epage><pages>9916-9924</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Often, extreme working environments with temperatures exceeding 800 °C result in the failure of conventional sensors. Recently, ceramic-based microwave backscattering wireless passive high-temperature sensors have emerged as viable alternatives. Typically, waveguide transmission lines-integral components of these sensors-are fabricated on ceramic substrates using 3-D manufacturing techniques such as drilling and metal backfilling; nevertheless, tolerances in drilling and backfilling are unavoidable. These tolerances are further aggravated by nonreversible pore expansion at extremely high temperatures and may lead to sensor cracking or complete failure. In the present study, we introduce a metamaterial high-temperature sensor that uses an all-planar substrate-integrated waveguide. The sensor's components are manufactured on alumina ceramic substrates exclusively through screen-printing, obviating the need for drilling. This approach effectively circumvents issues related to pore-induced errors or failures and offers the advantages of ease of fabrication and cost-effectiveness. For sensing, a single square complementary split resonant ring (S-CSRR) serves as the metamaterial resonator, providing the requisite temperature sensitivity. In the antenna segment, a coplanar waveguide-fed monopole antenna with a bandwidth of 2.3 GHz is employed. Three types of metal slurry, Ag, PtRh10, and Pt, are used in sensor fabrication, rendering them suitable for maximum measurement temperatures of 800 °C, 1200 °C, and 1600 °C, respectively. The average temperature sensitivities for these three sensors are 236, 220, and 191 kHz/°C, respectively. The proposed sensor, characterized by high integration, simplified processing, reduced fabrication costs, and a high <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor, holds significant application potential in industries such as aerospace, steel metallurgy, and energy mining.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3344196</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1560-9858</orcidid><orcidid>https://orcid.org/0000-0001-8680-5851</orcidid><orcidid>https://orcid.org/0009-0000-6507-3938</orcidid><orcidid>https://orcid.org/0000-0001-7877-9278</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-04, Vol.24 (7), p.9916-9924 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3031399027 |
source | IEEE Electronic Library (IEL) |
subjects | All-planar substrate integrated waveguide (AP-SIW) Antennas Ceramics Coplanar waveguides Drilling High temperature high-temperature sensor Metals metamaterial Metamaterials Monopole antennas Production costs Screen printing Sensitivity Sensor phenomena and characterization Sensors Substrate integrated waveguides Substrates Temperature Temperature measurement Temperature sensors Tolerances Transmission lines wireless passive |
title | Metamaterial High-Temperature Sensor Based on All-Planar Substrate Integrated Waveguide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamaterial%20High-Temperature%20Sensor%20Based%20on%20All-Planar%20Substrate%20Integrated%20Waveguide&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xiangxiang&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=9916&rft.epage=9924&rft.pages=9916-9924&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3344196&rft_dat=%3Cproquest_RIE%3E3031399027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031399027&rft_id=info:pmid/&rft_ieee_id=10379448&rfr_iscdi=true |