High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction
Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-04, Vol.24 (7), p.9868-9876 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9876 |
---|---|
container_issue | 7 |
container_start_page | 9868 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | You, Qing Li, Yuning Zhang, Yang Wang, Yuqiang Li, Xue Li, Linan Sun, Jingye Gao, Chang Deng, Tao |
description | Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future. |
doi_str_mv | 10.1109/JSEN.2024.3361865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3031398950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430109</ieee_id><sourcerecordid>3031398950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e7a739557dbc19dd9fe18cfeefd82b8300789eb0e201b37eedc9e50e5eab7d393</originalsourceid><addsrcrecordid>eNpNkD1PwzAQQC0EEqXwA5AYIjGnteO4tkeoSguqSqUWwRb8cSGpwC52MvTfk6gdmO6G9-6kh9AtwSNCsBy_bGarUYazfETphIgJO0MDwphICc_Feb9TnOaUf1yiqxh3GBPJGR-gz0X9VaVrCKUPP8oZSKYqaO-SlXK-aTWkjyqCTdaVb7yFBkzjQ0xmruphm-hDsnmfrrZxPA9qX4GDZNFRwe9aZ5rau2t0UarvCDenOURvT7PtdJEuX-fP04dlarJ80qTAFaeSMW61IdJaWQIRpgQorci0oBhzIUFjyDDRlANYI4FhYKA0t1TSIbo_3t0H_9tCbIqdb4PrXhYUU0KlkAx3FDlSJvgYA5TFPtQ_KhwKgos-ZNGHLPqQxSlk59wdnRoA_vE5xZ1A_wBWu3C7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031398950</pqid></control><display><type>article</type><title>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</title><source>IEEE Electronic Library (IEL)</source><creator>You, Qing ; Li, Yuning ; Zhang, Yang ; Wang, Yuqiang ; Li, Xue ; Li, Linan ; Sun, Jingye ; Gao, Chang ; Deng, Tao</creator><creatorcontrib>You, Qing ; Li, Yuning ; Zhang, Yang ; Wang, Yuqiang ; Li, Xue ; Li, Linan ; Sun, Jingye ; Gao, Chang ; Deng, Tao</creatorcontrib><description>Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3361865</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Environmental monitoring ; Field effect transistors ; Graphene ; heterojunction ; Heterojunctions ; Optical films ; photodetector ; Photodetectors ; Photometers ; Room temperature ; Sensors ; Single wall carbon nanotubes ; single-walled carbon nanotubes (SWCNTs)</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.9868-9876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e7a739557dbc19dd9fe18cfeefd82b8300789eb0e201b37eedc9e50e5eab7d393</cites><orcidid>0000-0001-9597-4833 ; 0000-0002-5551-7969 ; 0000-0003-2169-7380 ; 0000-0002-3078-6345 ; 0000-0002-1778-8629 ; 0000-0002-4830-4025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You, Qing</creatorcontrib><creatorcontrib>Li, Yuning</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Yuqiang</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Linan</creatorcontrib><creatorcontrib>Sun, Jingye</creatorcontrib><creatorcontrib>Gao, Chang</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><title>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.</description><subject>Broadband</subject><subject>Environmental monitoring</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Optical films</subject><subject>photodetector</subject><subject>Photodetectors</subject><subject>Photometers</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Single wall carbon nanotubes</subject><subject>single-walled carbon nanotubes (SWCNTs)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQQC0EEqXwA5AYIjGnteO4tkeoSguqSqUWwRb8cSGpwC52MvTfk6gdmO6G9-6kh9AtwSNCsBy_bGarUYazfETphIgJO0MDwphICc_Feb9TnOaUf1yiqxh3GBPJGR-gz0X9VaVrCKUPP8oZSKYqaO-SlXK-aTWkjyqCTdaVb7yFBkzjQ0xmruphm-hDsnmfrrZxPA9qX4GDZNFRwe9aZ5rau2t0UarvCDenOURvT7PtdJEuX-fP04dlarJ80qTAFaeSMW61IdJaWQIRpgQorci0oBhzIUFjyDDRlANYI4FhYKA0t1TSIbo_3t0H_9tCbIqdb4PrXhYUU0KlkAx3FDlSJvgYA5TFPtQ_KhwKgos-ZNGHLPqQxSlk59wdnRoA_vE5xZ1A_wBWu3C7</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>You, Qing</creator><creator>Li, Yuning</creator><creator>Zhang, Yang</creator><creator>Wang, Yuqiang</creator><creator>Li, Xue</creator><creator>Li, Linan</creator><creator>Sun, Jingye</creator><creator>Gao, Chang</creator><creator>Deng, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9597-4833</orcidid><orcidid>https://orcid.org/0000-0002-5551-7969</orcidid><orcidid>https://orcid.org/0000-0003-2169-7380</orcidid><orcidid>https://orcid.org/0000-0002-3078-6345</orcidid><orcidid>https://orcid.org/0000-0002-1778-8629</orcidid><orcidid>https://orcid.org/0000-0002-4830-4025</orcidid></search><sort><creationdate>20240401</creationdate><title>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</title><author>You, Qing ; Li, Yuning ; Zhang, Yang ; Wang, Yuqiang ; Li, Xue ; Li, Linan ; Sun, Jingye ; Gao, Chang ; Deng, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e7a739557dbc19dd9fe18cfeefd82b8300789eb0e201b37eedc9e50e5eab7d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Environmental monitoring</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Optical films</topic><topic>photodetector</topic><topic>Photodetectors</topic><topic>Photometers</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Single wall carbon nanotubes</topic><topic>single-walled carbon nanotubes (SWCNTs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Qing</creatorcontrib><creatorcontrib>Li, Yuning</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Yuqiang</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Linan</creatorcontrib><creatorcontrib>Sun, Jingye</creatorcontrib><creatorcontrib>Gao, Chang</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You, Qing</au><au>Li, Yuning</au><au>Zhang, Yang</au><au>Wang, Yuqiang</au><au>Li, Xue</au><au>Li, Linan</au><au>Sun, Jingye</au><au>Gao, Chang</au><au>Deng, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>9868</spage><epage>9876</epage><pages>9868-9876</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3361865</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9597-4833</orcidid><orcidid>https://orcid.org/0000-0002-5551-7969</orcidid><orcidid>https://orcid.org/0000-0003-2169-7380</orcidid><orcidid>https://orcid.org/0000-0002-3078-6345</orcidid><orcidid>https://orcid.org/0000-0002-1778-8629</orcidid><orcidid>https://orcid.org/0000-0002-4830-4025</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-04, Vol.24 (7), p.9868-9876 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_3031398950 |
source | IEEE Electronic Library (IEL) |
subjects | Broadband Environmental monitoring Field effect transistors Graphene heterojunction Heterojunctions Optical films photodetector Photodetectors Photometers Room temperature Sensors Single wall carbon nanotubes single-walled carbon nanotubes (SWCNTs) |
title | High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Carbon%20Nanotube-Based%20Photodetectors%20Enhanced%20by%20SWCNTs/Graphene%20Heterojunction&rft.jtitle=IEEE%20sensors%20journal&rft.au=You,%20Qing&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=9868&rft.epage=9876&rft.pages=9868-9876&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3361865&rft_dat=%3Cproquest_RIE%3E3031398950%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031398950&rft_id=info:pmid/&rft_ieee_id=10430109&rfr_iscdi=true |