High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction

Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-04, Vol.24 (7), p.9868-9876
Hauptverfasser: You, Qing, Li, Yuning, Zhang, Yang, Wang, Yuqiang, Li, Xue, Li, Linan, Sun, Jingye, Gao, Chang, Deng, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9876
container_issue 7
container_start_page 9868
container_title IEEE sensors journal
container_volume 24
creator You, Qing
Li, Yuning
Zhang, Yang
Wang, Yuqiang
Li, Xue
Li, Linan
Sun, Jingye
Gao, Chang
Deng, Tao
description Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.
doi_str_mv 10.1109/JSEN.2024.3361865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3031398950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430109</ieee_id><sourcerecordid>3031398950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e7a739557dbc19dd9fe18cfeefd82b8300789eb0e201b37eedc9e50e5eab7d393</originalsourceid><addsrcrecordid>eNpNkD1PwzAQQC0EEqXwA5AYIjGnteO4tkeoSguqSqUWwRb8cSGpwC52MvTfk6gdmO6G9-6kh9AtwSNCsBy_bGarUYazfETphIgJO0MDwphICc_Feb9TnOaUf1yiqxh3GBPJGR-gz0X9VaVrCKUPP8oZSKYqaO-SlXK-aTWkjyqCTdaVb7yFBkzjQ0xmruphm-hDsnmfrrZxPA9qX4GDZNFRwe9aZ5rau2t0UarvCDenOURvT7PtdJEuX-fP04dlarJ80qTAFaeSMW61IdJaWQIRpgQorci0oBhzIUFjyDDRlANYI4FhYKA0t1TSIbo_3t0H_9tCbIqdb4PrXhYUU0KlkAx3FDlSJvgYA5TFPtQ_KhwKgos-ZNGHLPqQxSlk59wdnRoA_vE5xZ1A_wBWu3C7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031398950</pqid></control><display><type>article</type><title>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</title><source>IEEE Electronic Library (IEL)</source><creator>You, Qing ; Li, Yuning ; Zhang, Yang ; Wang, Yuqiang ; Li, Xue ; Li, Linan ; Sun, Jingye ; Gao, Chang ; Deng, Tao</creator><creatorcontrib>You, Qing ; Li, Yuning ; Zhang, Yang ; Wang, Yuqiang ; Li, Xue ; Li, Linan ; Sun, Jingye ; Gao, Chang ; Deng, Tao</creatorcontrib><description>Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3361865</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Environmental monitoring ; Field effect transistors ; Graphene ; heterojunction ; Heterojunctions ; Optical films ; photodetector ; Photodetectors ; Photometers ; Room temperature ; Sensors ; Single wall carbon nanotubes ; single-walled carbon nanotubes (SWCNTs)</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.9868-9876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e7a739557dbc19dd9fe18cfeefd82b8300789eb0e201b37eedc9e50e5eab7d393</cites><orcidid>0000-0001-9597-4833 ; 0000-0002-5551-7969 ; 0000-0003-2169-7380 ; 0000-0002-3078-6345 ; 0000-0002-1778-8629 ; 0000-0002-4830-4025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You, Qing</creatorcontrib><creatorcontrib>Li, Yuning</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Yuqiang</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Linan</creatorcontrib><creatorcontrib>Sun, Jingye</creatorcontrib><creatorcontrib>Gao, Chang</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><title>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.</description><subject>Broadband</subject><subject>Environmental monitoring</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Optical films</subject><subject>photodetector</subject><subject>Photodetectors</subject><subject>Photometers</subject><subject>Room temperature</subject><subject>Sensors</subject><subject>Single wall carbon nanotubes</subject><subject>single-walled carbon nanotubes (SWCNTs)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQQC0EEqXwA5AYIjGnteO4tkeoSguqSqUWwRb8cSGpwC52MvTfk6gdmO6G9-6kh9AtwSNCsBy_bGarUYazfETphIgJO0MDwphICc_Feb9TnOaUf1yiqxh3GBPJGR-gz0X9VaVrCKUPP8oZSKYqaO-SlXK-aTWkjyqCTdaVb7yFBkzjQ0xmruphm-hDsnmfrrZxPA9qX4GDZNFRwe9aZ5rau2t0UarvCDenOURvT7PtdJEuX-fP04dlarJ80qTAFaeSMW61IdJaWQIRpgQorci0oBhzIUFjyDDRlANYI4FhYKA0t1TSIbo_3t0H_9tCbIqdb4PrXhYUU0KlkAx3FDlSJvgYA5TFPtQ_KhwKgos-ZNGHLPqQxSlk59wdnRoA_vE5xZ1A_wBWu3C7</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>You, Qing</creator><creator>Li, Yuning</creator><creator>Zhang, Yang</creator><creator>Wang, Yuqiang</creator><creator>Li, Xue</creator><creator>Li, Linan</creator><creator>Sun, Jingye</creator><creator>Gao, Chang</creator><creator>Deng, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9597-4833</orcidid><orcidid>https://orcid.org/0000-0002-5551-7969</orcidid><orcidid>https://orcid.org/0000-0003-2169-7380</orcidid><orcidid>https://orcid.org/0000-0002-3078-6345</orcidid><orcidid>https://orcid.org/0000-0002-1778-8629</orcidid><orcidid>https://orcid.org/0000-0002-4830-4025</orcidid></search><sort><creationdate>20240401</creationdate><title>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</title><author>You, Qing ; Li, Yuning ; Zhang, Yang ; Wang, Yuqiang ; Li, Xue ; Li, Linan ; Sun, Jingye ; Gao, Chang ; Deng, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e7a739557dbc19dd9fe18cfeefd82b8300789eb0e201b37eedc9e50e5eab7d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Environmental monitoring</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Optical films</topic><topic>photodetector</topic><topic>Photodetectors</topic><topic>Photometers</topic><topic>Room temperature</topic><topic>Sensors</topic><topic>Single wall carbon nanotubes</topic><topic>single-walled carbon nanotubes (SWCNTs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Qing</creatorcontrib><creatorcontrib>Li, Yuning</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wang, Yuqiang</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Li, Linan</creatorcontrib><creatorcontrib>Sun, Jingye</creatorcontrib><creatorcontrib>Gao, Chang</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You, Qing</au><au>Li, Yuning</au><au>Zhang, Yang</au><au>Wang, Yuqiang</au><au>Li, Xue</au><au>Li, Linan</au><au>Sun, Jingye</au><au>Gao, Chang</au><au>Deng, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>9868</spage><epage>9876</epage><pages>9868-9876</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Photodetectors have attracted considerable attention for applications in optical telecommunications, imaging, and environmental monitoring. In this article, a broadband (visible to near infrared) photodetector based buried-gate field-effec transistor was fabricated with a high photoresponsivity of 1091 A/W (at 590 nm) and 314 A/W (at 940 nm) using transparent single-walled carbon nanotubes (SWCNTs) films at room temperature. On this basis, the photoresponsivity of photodetectors can be further improved to 2842 A/W (at 590 nm) and 1043 A/W (at 940 nm) by constructing SWCNTs/graphene heterojunction, which is nearly 3 times higher than that of SWCNTs photodetectors. The comparison of the optoelectrical performance of these two devices further confirms that forming the SWCNTs/graphene all-carbon heterojunction facilitates the separation and transport of photogenerated carriers, thereby providing a feasible pathway for high-performance, miniaturized, large-scale, and broadband photodetectors. This work brings insight into the development of all-carbon hybrid-based high-performance photodetectors in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3361865</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9597-4833</orcidid><orcidid>https://orcid.org/0000-0002-5551-7969</orcidid><orcidid>https://orcid.org/0000-0003-2169-7380</orcidid><orcidid>https://orcid.org/0000-0002-3078-6345</orcidid><orcidid>https://orcid.org/0000-0002-1778-8629</orcidid><orcidid>https://orcid.org/0000-0002-4830-4025</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-04, Vol.24 (7), p.9868-9876
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3031398950
source IEEE Electronic Library (IEL)
subjects Broadband
Environmental monitoring
Field effect transistors
Graphene
heterojunction
Heterojunctions
Optical films
photodetector
Photodetectors
Photometers
Room temperature
Sensors
Single wall carbon nanotubes
single-walled carbon nanotubes (SWCNTs)
title High-Performance Carbon Nanotube-Based Photodetectors Enhanced by SWCNTs/Graphene Heterojunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Carbon%20Nanotube-Based%20Photodetectors%20Enhanced%20by%20SWCNTs/Graphene%20Heterojunction&rft.jtitle=IEEE%20sensors%20journal&rft.au=You,%20Qing&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=9868&rft.epage=9876&rft.pages=9868-9876&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3361865&rft_dat=%3Cproquest_RIE%3E3031398950%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031398950&rft_id=info:pmid/&rft_ieee_id=10430109&rfr_iscdi=true