Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions

Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2024-04, Vol.60 (2), p.687-706
Hauptverfasser: Johnson, Ryan C., Burian, Steven J., Oroza, Carlos A., Hansen, Carly, Baur, Emily, Aziz, Danyal, Hassan, Daniyal, Kirkham, Tracie, Stewart, Jessie, Briefer, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 706
container_issue 2
container_start_page 687
container_title Journal of the American Water Resources Association
container_volume 60
creator Johnson, Ryan C.
Burian, Steven J.
Oroza, Carlos A.
Hansen, Carly
Baur, Emily
Aziz, Danyal
Hassan, Daniyal
Kirkham, Tracie
Stewart, Jessie
Briefer, Laura
description Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.
doi_str_mv 10.1111/1752-1688.13186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031287134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031287134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3116-58dc51e5c1917c461d49396d0df7690d9e9962705472f931712fc3b9a98f61003</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKZqyXOab1xYsfHqrxVCQmB4GYZ2wFXiVPslKo3PoFv5EtwGsSVvexqZ2Z3NElyCngCsabAiiwFWpYTIFDSvWT0t9mPM-YkzVn-fJgchbDEGAooySipz2Unvz-_tLcfxqGm1aa27hV1LTLuTTplULN2VtmVrNFGdsYjbRrpNDKhs01cBGQd8iasWhdMr9NbJxurkKp3OFKt07azET5ODipZB3Py28fJ4-XFw_w6Xdxd3cxni1QRAJoWpVYFmEIBB6ZyCjrnhFONdcUox5obzmnGcJGzrOIEGGSVIi9c8rKigDEZJ2fD3ZVv39fRqFi2a-_iS0EwgaxkQPLImg4s5dsQvKnEykfHfisAiz5S0Qco-gDFLtKooINiY2uz_Y8ubmdP94PwByR3ecA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031287134</pqid></control><display><type>article</type><title>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</title><source>Access via Wiley Online Library</source><creator>Johnson, Ryan C. ; Burian, Steven J. ; Oroza, Carlos A. ; Hansen, Carly ; Baur, Emily ; Aziz, Danyal ; Hassan, Daniyal ; Kirkham, Tracie ; Stewart, Jessie ; Briefer, Laura</creator><creatorcontrib>Johnson, Ryan C. ; Burian, Steven J. ; Oroza, Carlos A. ; Hansen, Carly ; Baur, Emily ; Aziz, Danyal ; Hassan, Daniyal ; Kirkham, Tracie ; Stewart, Jessie ; Briefer, Laura</creatorcontrib><description>Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/1752-1688.13186</identifier><language>eng</language><publisher>Middleburg: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Climate ; Climate change ; Climate models ; climate resilience ; Climatic conditions ; Complexity ; Hydrologic models ; Lakes ; machine learning ; Model accuracy ; Municipal water ; Surface water ; Surface water availability ; Water availability ; Water demand ; water demand projections ; Water use ; Workflow</subject><ispartof>Journal of the American Water Resources Association, 2024-04, Vol.60 (2), p.687-706</ispartof><rights>2023 American Water Resources Association.</rights><rights>2024 American Water Resources Association</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3116-58dc51e5c1917c461d49396d0df7690d9e9962705472f931712fc3b9a98f61003</cites><orcidid>0000-0001-8812-7230 ; 0000-0002-0734-6894 ; 0000-0003-2195-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1752-1688.13186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1752-1688.13186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Johnson, Ryan C.</creatorcontrib><creatorcontrib>Burian, Steven J.</creatorcontrib><creatorcontrib>Oroza, Carlos A.</creatorcontrib><creatorcontrib>Hansen, Carly</creatorcontrib><creatorcontrib>Baur, Emily</creatorcontrib><creatorcontrib>Aziz, Danyal</creatorcontrib><creatorcontrib>Hassan, Daniyal</creatorcontrib><creatorcontrib>Kirkham, Tracie</creatorcontrib><creatorcontrib>Stewart, Jessie</creatorcontrib><creatorcontrib>Briefer, Laura</creatorcontrib><title>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</title><title>Journal of the American Water Resources Association</title><description>Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.</description><subject>Accuracy</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>climate resilience</subject><subject>Climatic conditions</subject><subject>Complexity</subject><subject>Hydrologic models</subject><subject>Lakes</subject><subject>machine learning</subject><subject>Model accuracy</subject><subject>Municipal water</subject><subject>Surface water</subject><subject>Surface water availability</subject><subject>Water availability</subject><subject>Water demand</subject><subject>water demand projections</subject><subject>Water use</subject><subject>Workflow</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMKZqyXOab1xYsfHqrxVCQmB4GYZ2wFXiVPslKo3PoFv5EtwGsSVvexqZ2Z3NElyCngCsabAiiwFWpYTIFDSvWT0t9mPM-YkzVn-fJgchbDEGAooySipz2Unvz-_tLcfxqGm1aa27hV1LTLuTTplULN2VtmVrNFGdsYjbRrpNDKhs01cBGQd8iasWhdMr9NbJxurkKp3OFKt07azET5ODipZB3Py28fJ4-XFw_w6Xdxd3cxni1QRAJoWpVYFmEIBB6ZyCjrnhFONdcUox5obzmnGcJGzrOIEGGSVIi9c8rKigDEZJ2fD3ZVv39fRqFi2a-_iS0EwgaxkQPLImg4s5dsQvKnEykfHfisAiz5S0Qco-gDFLtKooINiY2uz_Y8ubmdP94PwByR3ecA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Johnson, Ryan C.</creator><creator>Burian, Steven J.</creator><creator>Oroza, Carlos A.</creator><creator>Hansen, Carly</creator><creator>Baur, Emily</creator><creator>Aziz, Danyal</creator><creator>Hassan, Daniyal</creator><creator>Kirkham, Tracie</creator><creator>Stewart, Jessie</creator><creator>Briefer, Laura</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8812-7230</orcidid><orcidid>https://orcid.org/0000-0002-0734-6894</orcidid><orcidid>https://orcid.org/0000-0003-2195-739X</orcidid></search><sort><creationdate>202404</creationdate><title>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</title><author>Johnson, Ryan C. ; Burian, Steven J. ; Oroza, Carlos A. ; Hansen, Carly ; Baur, Emily ; Aziz, Danyal ; Hassan, Daniyal ; Kirkham, Tracie ; Stewart, Jessie ; Briefer, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3116-58dc51e5c1917c461d49396d0df7690d9e9962705472f931712fc3b9a98f61003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>climate resilience</topic><topic>Climatic conditions</topic><topic>Complexity</topic><topic>Hydrologic models</topic><topic>Lakes</topic><topic>machine learning</topic><topic>Model accuracy</topic><topic>Municipal water</topic><topic>Surface water</topic><topic>Surface water availability</topic><topic>Water availability</topic><topic>Water demand</topic><topic>water demand projections</topic><topic>Water use</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Ryan C.</creatorcontrib><creatorcontrib>Burian, Steven J.</creatorcontrib><creatorcontrib>Oroza, Carlos A.</creatorcontrib><creatorcontrib>Hansen, Carly</creatorcontrib><creatorcontrib>Baur, Emily</creatorcontrib><creatorcontrib>Aziz, Danyal</creatorcontrib><creatorcontrib>Hassan, Daniyal</creatorcontrib><creatorcontrib>Kirkham, Tracie</creatorcontrib><creatorcontrib>Stewart, Jessie</creatorcontrib><creatorcontrib>Briefer, Laura</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Ryan C.</au><au>Burian, Steven J.</au><au>Oroza, Carlos A.</au><au>Hansen, Carly</au><au>Baur, Emily</au><au>Aziz, Danyal</au><au>Hassan, Daniyal</au><au>Kirkham, Tracie</au><au>Stewart, Jessie</au><au>Briefer, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2024-04</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>687</spage><epage>706</epage><pages>687-706</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><abstract>Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.</abstract><cop>Middleburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1752-1688.13186</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8812-7230</orcidid><orcidid>https://orcid.org/0000-0002-0734-6894</orcidid><orcidid>https://orcid.org/0000-0003-2195-739X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-474X
ispartof Journal of the American Water Resources Association, 2024-04, Vol.60 (2), p.687-706
issn 1093-474X
1752-1688
language eng
recordid cdi_proquest_journals_3031287134
source Access via Wiley Online Library
subjects Accuracy
Climate
Climate change
Climate models
climate resilience
Climatic conditions
Complexity
Hydrologic models
Lakes
machine learning
Model accuracy
Municipal water
Surface water
Surface water availability
Water availability
Water demand
water demand projections
Water use
Workflow
title Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90driven%20modeling%20to%20enhance%20municipal%20water%20demand%20estimates%20in%20response%20to%20dynamic%20climate%20conditions&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Johnson,%20Ryan%20C.&rft.date=2024-04&rft.volume=60&rft.issue=2&rft.spage=687&rft.epage=706&rft.pages=687-706&rft.issn=1093-474X&rft.eissn=1752-1688&rft_id=info:doi/10.1111/1752-1688.13186&rft_dat=%3Cproquest_cross%3E3031287134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031287134&rft_id=info:pmid/&rfr_iscdi=true