Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions
Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand...
Gespeichert in:
Veröffentlicht in: | Journal of the American Water Resources Association 2024-04, Vol.60 (2), p.687-706 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | 2 |
container_start_page | 687 |
container_title | Journal of the American Water Resources Association |
container_volume | 60 |
creator | Johnson, Ryan C. Burian, Steven J. Oroza, Carlos A. Hansen, Carly Baur, Emily Aziz, Danyal Hassan, Daniyal Kirkham, Tracie Stewart, Jessie Briefer, Laura |
description | Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management. |
doi_str_mv | 10.1111/1752-1688.13186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031287134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031287134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3116-58dc51e5c1917c461d49396d0df7690d9e9962705472f931712fc3b9a98f61003</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKZqyXOab1xYsfHqrxVCQmB4GYZ2wFXiVPslKo3PoFv5EtwGsSVvexqZ2Z3NElyCngCsabAiiwFWpYTIFDSvWT0t9mPM-YkzVn-fJgchbDEGAooySipz2Unvz-_tLcfxqGm1aa27hV1LTLuTTplULN2VtmVrNFGdsYjbRrpNDKhs01cBGQd8iasWhdMr9NbJxurkKp3OFKt07azET5ODipZB3Py28fJ4-XFw_w6Xdxd3cxni1QRAJoWpVYFmEIBB6ZyCjrnhFONdcUox5obzmnGcJGzrOIEGGSVIi9c8rKigDEZJ2fD3ZVv39fRqFi2a-_iS0EwgaxkQPLImg4s5dsQvKnEykfHfisAiz5S0Qco-gDFLtKooINiY2uz_Y8ubmdP94PwByR3ecA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031287134</pqid></control><display><type>article</type><title>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</title><source>Access via Wiley Online Library</source><creator>Johnson, Ryan C. ; Burian, Steven J. ; Oroza, Carlos A. ; Hansen, Carly ; Baur, Emily ; Aziz, Danyal ; Hassan, Daniyal ; Kirkham, Tracie ; Stewart, Jessie ; Briefer, Laura</creator><creatorcontrib>Johnson, Ryan C. ; Burian, Steven J. ; Oroza, Carlos A. ; Hansen, Carly ; Baur, Emily ; Aziz, Danyal ; Hassan, Daniyal ; Kirkham, Tracie ; Stewart, Jessie ; Briefer, Laura</creatorcontrib><description>Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.</description><identifier>ISSN: 1093-474X</identifier><identifier>EISSN: 1752-1688</identifier><identifier>DOI: 10.1111/1752-1688.13186</identifier><language>eng</language><publisher>Middleburg: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Climate ; Climate change ; Climate models ; climate resilience ; Climatic conditions ; Complexity ; Hydrologic models ; Lakes ; machine learning ; Model accuracy ; Municipal water ; Surface water ; Surface water availability ; Water availability ; Water demand ; water demand projections ; Water use ; Workflow</subject><ispartof>Journal of the American Water Resources Association, 2024-04, Vol.60 (2), p.687-706</ispartof><rights>2023 American Water Resources Association.</rights><rights>2024 American Water Resources Association</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3116-58dc51e5c1917c461d49396d0df7690d9e9962705472f931712fc3b9a98f61003</cites><orcidid>0000-0001-8812-7230 ; 0000-0002-0734-6894 ; 0000-0003-2195-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1752-1688.13186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1752-1688.13186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Johnson, Ryan C.</creatorcontrib><creatorcontrib>Burian, Steven J.</creatorcontrib><creatorcontrib>Oroza, Carlos A.</creatorcontrib><creatorcontrib>Hansen, Carly</creatorcontrib><creatorcontrib>Baur, Emily</creatorcontrib><creatorcontrib>Aziz, Danyal</creatorcontrib><creatorcontrib>Hassan, Daniyal</creatorcontrib><creatorcontrib>Kirkham, Tracie</creatorcontrib><creatorcontrib>Stewart, Jessie</creatorcontrib><creatorcontrib>Briefer, Laura</creatorcontrib><title>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</title><title>Journal of the American Water Resources Association</title><description>Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.</description><subject>Accuracy</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>climate resilience</subject><subject>Climatic conditions</subject><subject>Complexity</subject><subject>Hydrologic models</subject><subject>Lakes</subject><subject>machine learning</subject><subject>Model accuracy</subject><subject>Municipal water</subject><subject>Surface water</subject><subject>Surface water availability</subject><subject>Water availability</subject><subject>Water demand</subject><subject>water demand projections</subject><subject>Water use</subject><subject>Workflow</subject><issn>1093-474X</issn><issn>1752-1688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMKZqyXOab1xYsfHqrxVCQmB4GYZ2wFXiVPslKo3PoFv5EtwGsSVvexqZ2Z3NElyCngCsabAiiwFWpYTIFDSvWT0t9mPM-YkzVn-fJgchbDEGAooySipz2Unvz-_tLcfxqGm1aa27hV1LTLuTTplULN2VtmVrNFGdsYjbRrpNDKhs01cBGQd8iasWhdMr9NbJxurkKp3OFKt07azET5ODipZB3Py28fJ4-XFw_w6Xdxd3cxni1QRAJoWpVYFmEIBB6ZyCjrnhFONdcUox5obzmnGcJGzrOIEGGSVIi9c8rKigDEZJ2fD3ZVv39fRqFi2a-_iS0EwgaxkQPLImg4s5dsQvKnEykfHfisAiz5S0Qco-gDFLtKooINiY2uz_Y8ubmdP94PwByR3ecA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Johnson, Ryan C.</creator><creator>Burian, Steven J.</creator><creator>Oroza, Carlos A.</creator><creator>Hansen, Carly</creator><creator>Baur, Emily</creator><creator>Aziz, Danyal</creator><creator>Hassan, Daniyal</creator><creator>Kirkham, Tracie</creator><creator>Stewart, Jessie</creator><creator>Briefer, Laura</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8812-7230</orcidid><orcidid>https://orcid.org/0000-0002-0734-6894</orcidid><orcidid>https://orcid.org/0000-0003-2195-739X</orcidid></search><sort><creationdate>202404</creationdate><title>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</title><author>Johnson, Ryan C. ; Burian, Steven J. ; Oroza, Carlos A. ; Hansen, Carly ; Baur, Emily ; Aziz, Danyal ; Hassan, Daniyal ; Kirkham, Tracie ; Stewart, Jessie ; Briefer, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3116-58dc51e5c1917c461d49396d0df7690d9e9962705472f931712fc3b9a98f61003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>climate resilience</topic><topic>Climatic conditions</topic><topic>Complexity</topic><topic>Hydrologic models</topic><topic>Lakes</topic><topic>machine learning</topic><topic>Model accuracy</topic><topic>Municipal water</topic><topic>Surface water</topic><topic>Surface water availability</topic><topic>Water availability</topic><topic>Water demand</topic><topic>water demand projections</topic><topic>Water use</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Ryan C.</creatorcontrib><creatorcontrib>Burian, Steven J.</creatorcontrib><creatorcontrib>Oroza, Carlos A.</creatorcontrib><creatorcontrib>Hansen, Carly</creatorcontrib><creatorcontrib>Baur, Emily</creatorcontrib><creatorcontrib>Aziz, Danyal</creatorcontrib><creatorcontrib>Hassan, Daniyal</creatorcontrib><creatorcontrib>Kirkham, Tracie</creatorcontrib><creatorcontrib>Stewart, Jessie</creatorcontrib><creatorcontrib>Briefer, Laura</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of the American Water Resources Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Ryan C.</au><au>Burian, Steven J.</au><au>Oroza, Carlos A.</au><au>Hansen, Carly</au><au>Baur, Emily</au><au>Aziz, Danyal</au><au>Hassan, Daniyal</au><au>Kirkham, Tracie</au><au>Stewart, Jessie</au><au>Briefer, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions</atitle><jtitle>Journal of the American Water Resources Association</jtitle><date>2024-04</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>687</spage><epage>706</epage><pages>687-706</pages><issn>1093-474X</issn><eissn>1752-1688</eissn><abstract>Altered precipitation and temperature patterns from a changing climate will affect supply, demand, and overall municipal water system operations throughout the arid western U.S. While supply forecasts leverage hydrological models to connect climate influences with surface water availability, demand forecasts typically estimate water use independent of climate and other externalities. Stemming from an increased focus on seasonal water demand management, we use the Salt Lake City, Utah municipal water system as a test bed to assess model accuracy versus complexity trade‐offs between simple climate‐independent econometric‐based models and complex climate‐sensitive data‐driven models to average to extreme wet and dry climate conditions—representative of a new climate normal. The climate‐independent model displayed low performance during extreme dry conditions with predictions exceeding 90% and 40% of the observed monthly and seasonal volumetric demands, respectively, which we attribute to insufficient model complexity. The climate‐sensitive models displayed greater accuracy in all conditions, with an ordinary least squares model demonstrating a measurable reduction in prediction bias (3.4% vs. −27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate‐independent model. The climate‐sensitive workflow increased model accuracy and characterized climate‐demand interactions, demonstrating a novel tool to enhance water system management.</abstract><cop>Middleburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1752-1688.13186</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-8812-7230</orcidid><orcidid>https://orcid.org/0000-0002-0734-6894</orcidid><orcidid>https://orcid.org/0000-0003-2195-739X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-474X |
ispartof | Journal of the American Water Resources Association, 2024-04, Vol.60 (2), p.687-706 |
issn | 1093-474X 1752-1688 |
language | eng |
recordid | cdi_proquest_journals_3031287134 |
source | Access via Wiley Online Library |
subjects | Accuracy Climate Climate change Climate models climate resilience Climatic conditions Complexity Hydrologic models Lakes machine learning Model accuracy Municipal water Surface water Surface water availability Water availability Water demand water demand projections Water use Workflow |
title | Data‐driven modeling to enhance municipal water demand estimates in response to dynamic climate conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90driven%20modeling%20to%20enhance%20municipal%20water%20demand%20estimates%20in%20response%20to%20dynamic%20climate%20conditions&rft.jtitle=Journal%20of%20the%20American%20Water%20Resources%20Association&rft.au=Johnson,%20Ryan%20C.&rft.date=2024-04&rft.volume=60&rft.issue=2&rft.spage=687&rft.epage=706&rft.pages=687-706&rft.issn=1093-474X&rft.eissn=1752-1688&rft_id=info:doi/10.1111/1752-1688.13186&rft_dat=%3Cproquest_cross%3E3031287134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031287134&rft_id=info:pmid/&rfr_iscdi=true |