Hyperbolic problems with totally characteristic boundary
We study first-order symmetrizable hyperbolic N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at x = 0 , these systems take the form ∂ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ∈ ( 0 , T ) ×...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2024-06, Vol.15 (2), Article 29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of pseudo-differential operators and applications |
container_volume | 15 |
creator | Ruan, Zhuoping Witt, Ingo |
description | We study first-order symmetrizable hyperbolic
N
×
N
systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at
x
=
0
, these systems take the form
∂
t
u
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
u
=
f
(
t
,
x
,
y
)
,
(
t
,
x
,
y
)
∈
(
0
,
T
)
×
R
+
×
R
d
,
where
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is a first-order differential operator with coefficients smooth up to
x
=
0
and the derivative with respect to
x
appears in the combination
x
D
x
. No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in that scale. More specifically, solutions
u
exhibit formal asymptotic expansions of the form
u
(
t
,
x
,
y
)
∼
∑
(
p
,
k
)
(
-
1
)
k
k
!
x
-
p
log
k
x
u
pk
(
t
,
y
)
as
x
→
+
0
where
(
p
,
k
)
∈
C
×
N
0
and
ℜ
p
→
-
∞
as
|
p
|
→
∞
, provided that the right-hand side
f
and the initial data
u
|
t
=
0
admit asymptotic expansions as
x
→
+
0
of a similar form, with the singular exponents
p
and their multiplicities unchanged. In fact, the coefficients
u
pk
are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients
u
pk
solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in the scale of standard Sobolev spaces
H
s
(
(
0
,
T
)
×
R
+
1
+
d
)
. |
doi_str_mv | 10.1007/s11868-024-00599-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031276332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031276332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-120311792b4283c058409e82ddaaac1e3fa234639425c6aefe0bf24d4a56684a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwVPEeTTJomR1nUFRa8KHgLaZq6XbptTVLc_nujFb05l5nDe28eH0KXlFxTQoqbQKkUEhPGMSG5Uvh4ghZUCIaVUq-nv7ek52gVwp6kAQWUwgLJzTQ4X_ZtY7PB92XrDiH7aOIui300bTtldme8sdH5JsQkKvuxq4yfLtBZbdrgVj97iV7u757XG7x9enhc326xBcojpoykR4ViJWcSLMklJ8pJVlXGGEsd1IYBF6A4y60wrnakrBmvuMmFkNzAEl3Nuand--hC1Pt-9F16qSFFs0IAsKRis8r6PgTvaj345pBqakr0FyQ9Q9IJkv6GpI_JBLMpJHH35vxf9D-uT_NHahU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031276332</pqid></control><display><type>article</type><title>Hyperbolic problems with totally characteristic boundary</title><source>SpringerLink Journals</source><creator>Ruan, Zhuoping ; Witt, Ingo</creator><creatorcontrib>Ruan, Zhuoping ; Witt, Ingo</creatorcontrib><description>We study first-order symmetrizable hyperbolic
N
×
N
systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at
x
=
0
, these systems take the form
∂
t
u
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
u
=
f
(
t
,
x
,
y
)
,
(
t
,
x
,
y
)
∈
(
0
,
T
)
×
R
+
×
R
d
,
where
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is a first-order differential operator with coefficients smooth up to
x
=
0
and the derivative with respect to
x
appears in the combination
x
D
x
. No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in that scale. More specifically, solutions
u
exhibit formal asymptotic expansions of the form
u
(
t
,
x
,
y
)
∼
∑
(
p
,
k
)
(
-
1
)
k
k
!
x
-
p
log
k
x
u
pk
(
t
,
y
)
as
x
→
+
0
where
(
p
,
k
)
∈
C
×
N
0
and
ℜ
p
→
-
∞
as
|
p
|
→
∞
, provided that the right-hand side
f
and the initial data
u
|
t
=
0
admit asymptotic expansions as
x
→
+
0
of a similar form, with the singular exponents
p
and their multiplicities unchanged. In fact, the coefficients
u
pk
are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients
u
pk
solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in the scale of standard Sobolev spaces
H
s
(
(
0
,
T
)
×
R
+
1
+
d
)
.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-024-00599-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Asymptotic series ; Boundary conditions ; Boundary value problems ; Cauchy problems ; Coefficients ; Differential equations ; Function space ; Functional Analysis ; Hyperbolic systems ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Partial Differential Equations ; Sobolev space ; Tensors ; Well posed problems</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 29</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-120311792b4283c058409e82ddaaac1e3fa234639425c6aefe0bf24d4a56684a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-024-00599-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-024-00599-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ruan, Zhuoping</creatorcontrib><creatorcontrib>Witt, Ingo</creatorcontrib><title>Hyperbolic problems with totally characteristic boundary</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>We study first-order symmetrizable hyperbolic
N
×
N
systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at
x
=
0
, these systems take the form
∂
t
u
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
u
=
f
(
t
,
x
,
y
)
,
(
t
,
x
,
y
)
∈
(
0
,
T
)
×
R
+
×
R
d
,
where
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is a first-order differential operator with coefficients smooth up to
x
=
0
and the derivative with respect to
x
appears in the combination
x
D
x
. No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in that scale. More specifically, solutions
u
exhibit formal asymptotic expansions of the form
u
(
t
,
x
,
y
)
∼
∑
(
p
,
k
)
(
-
1
)
k
k
!
x
-
p
log
k
x
u
pk
(
t
,
y
)
as
x
→
+
0
where
(
p
,
k
)
∈
C
×
N
0
and
ℜ
p
→
-
∞
as
|
p
|
→
∞
, provided that the right-hand side
f
and the initial data
u
|
t
=
0
admit asymptotic expansions as
x
→
+
0
of a similar form, with the singular exponents
p
and their multiplicities unchanged. In fact, the coefficients
u
pk
are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients
u
pk
solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in the scale of standard Sobolev spaces
H
s
(
(
0
,
T
)
×
R
+
1
+
d
)
.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Asymptotic series</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Function space</subject><subject>Functional Analysis</subject><subject>Hyperbolic systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Sobolev space</subject><subject>Tensors</subject><subject>Well posed problems</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouKz7BzwVPEeTTJomR1nUFRa8KHgLaZq6XbptTVLc_nujFb05l5nDe28eH0KXlFxTQoqbQKkUEhPGMSG5Uvh4ghZUCIaVUq-nv7ek52gVwp6kAQWUwgLJzTQ4X_ZtY7PB92XrDiH7aOIui300bTtldme8sdH5JsQkKvuxq4yfLtBZbdrgVj97iV7u757XG7x9enhc326xBcojpoykR4ViJWcSLMklJ8pJVlXGGEsd1IYBF6A4y60wrnakrBmvuMmFkNzAEl3Nuand--hC1Pt-9F16qSFFs0IAsKRis8r6PgTvaj345pBqakr0FyQ9Q9IJkv6GpI_JBLMpJHH35vxf9D-uT_NHahU</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ruan, Zhuoping</creator><creator>Witt, Ingo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Hyperbolic problems with totally characteristic boundary</title><author>Ruan, Zhuoping ; Witt, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-120311792b4283c058409e82ddaaac1e3fa234639425c6aefe0bf24d4a56684a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Asymptotic series</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Function space</topic><topic>Functional Analysis</topic><topic>Hyperbolic systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Sobolev space</topic><topic>Tensors</topic><topic>Well posed problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Zhuoping</creatorcontrib><creatorcontrib>Witt, Ingo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Zhuoping</au><au>Witt, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic problems with totally characteristic boundary</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><artnum>29</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>We study first-order symmetrizable hyperbolic
N
×
N
systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at
x
=
0
, these systems take the form
∂
t
u
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
u
=
f
(
t
,
x
,
y
)
,
(
t
,
x
,
y
)
∈
(
0
,
T
)
×
R
+
×
R
d
,
where
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is a first-order differential operator with coefficients smooth up to
x
=
0
and the derivative with respect to
x
appears in the combination
x
D
x
. No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in that scale. More specifically, solutions
u
exhibit formal asymptotic expansions of the form
u
(
t
,
x
,
y
)
∼
∑
(
p
,
k
)
(
-
1
)
k
k
!
x
-
p
log
k
x
u
pk
(
t
,
y
)
as
x
→
+
0
where
(
p
,
k
)
∈
C
×
N
0
and
ℜ
p
→
-
∞
as
|
p
|
→
∞
, provided that the right-hand side
f
and the initial data
u
|
t
=
0
admit asymptotic expansions as
x
→
+
0
of a similar form, with the singular exponents
p
and their multiplicities unchanged. In fact, the coefficients
u
pk
are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients
u
pk
solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator
∂
t
+
A
(
t
,
x
,
y
,
x
D
x
,
D
y
)
is well-posed in the scale of standard Sobolev spaces
H
s
(
(
0
,
T
)
×
R
+
1
+
d
)
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-024-00599-x</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-9981 |
ispartof | Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 29 |
issn | 1662-9981 1662-999X |
language | eng |
recordid | cdi_proquest_journals_3031276332 |
source | SpringerLink Journals |
subjects | Algebra Analysis Applications of Mathematics Asymptotic series Boundary conditions Boundary value problems Cauchy problems Coefficients Differential equations Function space Functional Analysis Hyperbolic systems Mathematics Mathematics and Statistics Operator Theory Operators (mathematics) Partial Differential Equations Sobolev space Tensors Well posed problems |
title | Hyperbolic problems with totally characteristic boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20problems%20with%20totally%20characteristic%20boundary&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Ruan,%20Zhuoping&rft.date=2024-06-01&rft.volume=15&rft.issue=2&rft.artnum=29&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-024-00599-x&rft_dat=%3Cproquest_cross%3E3031276332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031276332&rft_id=info:pmid/&rfr_iscdi=true |