Hyperbolic problems with totally characteristic boundary

We study first-order symmetrizable hyperbolic N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at x = 0 , these systems take the form ∂ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ∈ ( 0 , T ) ×...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2024-06, Vol.15 (2), Article 29
Hauptverfasser: Ruan, Zhuoping, Witt, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of pseudo-differential operators and applications
container_volume 15
creator Ruan, Zhuoping
Witt, Ingo
description We study first-order symmetrizable hyperbolic N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at x = 0 , these systems take the form ∂ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ∈ ( 0 , T ) × R + × R d , where A ( t , x , y , x D x , D y ) is a first-order differential operator with coefficients smooth up to x = 0 and the derivative with respect to x appears in the combination x D x . No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in that scale. More specifically, solutions u exhibit formal asymptotic expansions of the form u ( t , x , y ) ∼ ∑ ( p , k ) ( - 1 ) k k ! x - p log k x u pk ( t , y ) as x → + 0 where ( p , k ) ∈ C × N 0 and ℜ p → - ∞ as | p | → ∞ , provided that the right-hand side f and the initial data u | t = 0 admit asymptotic expansions as x → + 0 of a similar form, with the singular exponents  p and their multiplicities unchanged. In fact, the coefficients u pk are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients  u pk solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in the scale of standard Sobolev spaces H s ( ( 0 , T ) × R + 1 + d ) .
doi_str_mv 10.1007/s11868-024-00599-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031276332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031276332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-120311792b4283c058409e82ddaaac1e3fa234639425c6aefe0bf24d4a56684a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouKz7BzwVPEeTTJomR1nUFRa8KHgLaZq6XbptTVLc_nujFb05l5nDe28eH0KXlFxTQoqbQKkUEhPGMSG5Uvh4ghZUCIaVUq-nv7ek52gVwp6kAQWUwgLJzTQ4X_ZtY7PB92XrDiH7aOIui300bTtldme8sdH5JsQkKvuxq4yfLtBZbdrgVj97iV7u757XG7x9enhc326xBcojpoykR4ViJWcSLMklJ8pJVlXGGEsd1IYBF6A4y60wrnakrBmvuMmFkNzAEl3Nuand--hC1Pt-9F16qSFFs0IAsKRis8r6PgTvaj345pBqakr0FyQ9Q9IJkv6GpI_JBLMpJHH35vxf9D-uT_NHahU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031276332</pqid></control><display><type>article</type><title>Hyperbolic problems with totally characteristic boundary</title><source>SpringerLink Journals</source><creator>Ruan, Zhuoping ; Witt, Ingo</creator><creatorcontrib>Ruan, Zhuoping ; Witt, Ingo</creatorcontrib><description>We study first-order symmetrizable hyperbolic N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at x = 0 , these systems take the form ∂ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ∈ ( 0 , T ) × R + × R d , where A ( t , x , y , x D x , D y ) is a first-order differential operator with coefficients smooth up to x = 0 and the derivative with respect to x appears in the combination x D x . No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in that scale. More specifically, solutions u exhibit formal asymptotic expansions of the form u ( t , x , y ) ∼ ∑ ( p , k ) ( - 1 ) k k ! x - p log k x u pk ( t , y ) as x → + 0 where ( p , k ) ∈ C × N 0 and ℜ p → - ∞ as | p | → ∞ , provided that the right-hand side f and the initial data u | t = 0 admit asymptotic expansions as x → + 0 of a similar form, with the singular exponents  p and their multiplicities unchanged. In fact, the coefficients u pk are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients  u pk solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in the scale of standard Sobolev spaces H s ( ( 0 , T ) × R + 1 + d ) .</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-024-00599-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Asymptotic series ; Boundary conditions ; Boundary value problems ; Cauchy problems ; Coefficients ; Differential equations ; Function space ; Functional Analysis ; Hyperbolic systems ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Partial Differential Equations ; Sobolev space ; Tensors ; Well posed problems</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 29</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-120311792b4283c058409e82ddaaac1e3fa234639425c6aefe0bf24d4a56684a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-024-00599-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-024-00599-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ruan, Zhuoping</creatorcontrib><creatorcontrib>Witt, Ingo</creatorcontrib><title>Hyperbolic problems with totally characteristic boundary</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>We study first-order symmetrizable hyperbolic N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at x = 0 , these systems take the form ∂ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ∈ ( 0 , T ) × R + × R d , where A ( t , x , y , x D x , D y ) is a first-order differential operator with coefficients smooth up to x = 0 and the derivative with respect to x appears in the combination x D x . No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in that scale. More specifically, solutions u exhibit formal asymptotic expansions of the form u ( t , x , y ) ∼ ∑ ( p , k ) ( - 1 ) k k ! x - p log k x u pk ( t , y ) as x → + 0 where ( p , k ) ∈ C × N 0 and ℜ p → - ∞ as | p | → ∞ , provided that the right-hand side f and the initial data u | t = 0 admit asymptotic expansions as x → + 0 of a similar form, with the singular exponents  p and their multiplicities unchanged. In fact, the coefficients u pk are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients  u pk solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in the scale of standard Sobolev spaces H s ( ( 0 , T ) × R + 1 + d ) .</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Asymptotic series</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Function space</subject><subject>Functional Analysis</subject><subject>Hyperbolic systems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Sobolev space</subject><subject>Tensors</subject><subject>Well posed problems</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouKz7BzwVPEeTTJomR1nUFRa8KHgLaZq6XbptTVLc_nujFb05l5nDe28eH0KXlFxTQoqbQKkUEhPGMSG5Uvh4ghZUCIaVUq-nv7ek52gVwp6kAQWUwgLJzTQ4X_ZtY7PB92XrDiH7aOIui300bTtldme8sdH5JsQkKvuxq4yfLtBZbdrgVj97iV7u757XG7x9enhc326xBcojpoykR4ViJWcSLMklJ8pJVlXGGEsd1IYBF6A4y60wrnakrBmvuMmFkNzAEl3Nuand--hC1Pt-9F16qSFFs0IAsKRis8r6PgTvaj345pBqakr0FyQ9Q9IJkv6GpI_JBLMpJHH35vxf9D-uT_NHahU</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ruan, Zhuoping</creator><creator>Witt, Ingo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Hyperbolic problems with totally characteristic boundary</title><author>Ruan, Zhuoping ; Witt, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-120311792b4283c058409e82ddaaac1e3fa234639425c6aefe0bf24d4a56684a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Asymptotic series</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Function space</topic><topic>Functional Analysis</topic><topic>Hyperbolic systems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Sobolev space</topic><topic>Tensors</topic><topic>Well posed problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Zhuoping</creatorcontrib><creatorcontrib>Witt, Ingo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Zhuoping</au><au>Witt, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic problems with totally characteristic boundary</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>2</issue><artnum>29</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>We study first-order symmetrizable hyperbolic N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at x = 0 , these systems take the form ∂ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ∈ ( 0 , T ) × R + × R d , where A ( t , x , y , x D x , D y ) is a first-order differential operator with coefficients smooth up to x = 0 and the derivative with respect to x appears in the combination x D x . No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in that scale. More specifically, solutions u exhibit formal asymptotic expansions of the form u ( t , x , y ) ∼ ∑ ( p , k ) ( - 1 ) k k ! x - p log k x u pk ( t , y ) as x → + 0 where ( p , k ) ∈ C × N 0 and ℜ p → - ∞ as | p | → ∞ , provided that the right-hand side f and the initial data u | t = 0 admit asymptotic expansions as x → + 0 of a similar form, with the singular exponents  p and their multiplicities unchanged. In fact, the coefficients u pk are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients  u pk solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator ∂ t + A ( t , x , y , x D x , D y ) is well-posed in the scale of standard Sobolev spaces H s ( ( 0 , T ) × R + 1 + d ) .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-024-00599-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-9981
ispartof Journal of pseudo-differential operators and applications, 2024-06, Vol.15 (2), Article 29
issn 1662-9981
1662-999X
language eng
recordid cdi_proquest_journals_3031276332
source SpringerLink Journals
subjects Algebra
Analysis
Applications of Mathematics
Asymptotic series
Boundary conditions
Boundary value problems
Cauchy problems
Coefficients
Differential equations
Function space
Functional Analysis
Hyperbolic systems
Mathematics
Mathematics and Statistics
Operator Theory
Operators (mathematics)
Partial Differential Equations
Sobolev space
Tensors
Well posed problems
title Hyperbolic problems with totally characteristic boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20problems%20with%20totally%20characteristic%20boundary&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Ruan,%20Zhuoping&rft.date=2024-06-01&rft.volume=15&rft.issue=2&rft.artnum=29&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-024-00599-x&rft_dat=%3Cproquest_cross%3E3031276332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031276332&rft_id=info:pmid/&rfr_iscdi=true