On the implementation of a material point‐based arc‐length method
Summary The material point method is a versatile technique which can be used to solve various types of solid mechanics problems, especially those involving large deformations. However, the capability of the material point method to track a load‐displacement response can deteriorate once a limit poin...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2024-05, Vol.125 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | International journal for numerical methods in engineering |
container_volume | 125 |
creator | Gavin, Nathan D. Pretti, Giuliano Coombs, William M. Brigham, John C. Augarde, Charles E. |
description | Summary
The material point method is a versatile technique which can be used to solve various types of solid mechanics problems, especially those involving large deformations. However, the capability of the material point method to track a load‐displacement response can deteriorate once a limit point, such as snap‐through or snap‐back, in the response is encountered. One way of overcoming this is to use path following techniques, such as an arc‐length method. This technique is well established in finite element analysis but not within any material point method formulation. This paper provides for the first time an arc‐length controlled implicit, quasi‐static material point method. The modifications to the standard arc‐length scheme to allow for the stable execution of an arc‐length solver within the material point method are detailed. The capability of the material point‐based arc‐length method is demonstrated through a number of problems, which include linear elastic, non‐linear elastic, linear elastic‐perfectly plastic and linear elastic‐plastic softening material behaviour under large deformations. The techniques presented in this paper are essential for arc‐length techniques to be applied effectively to the material point method and the combination of these techniques makes the method suitable for new problems that cannot be solved with existing implicit material point approaches. |
doi_str_mv | 10.1002/nme.7438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031030785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031030785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2888-25be0b5def9fe5bd83928dd6b78e81066453c5b0c082f1c5f4c80d1f7eb2d1fb3</originalsourceid><addsrcrecordid>eNp10M9KAzEQBvAgCtYq-AgBL162TjZNN3uUUv9AtRc9h2QzsVt2kzWbIr35CD6jT-LWevX0DcyPGfgIuWQwYQD5jW9xUky5PCIjBmWRQQ7FMRkNqzITpWSn5KzvNwCMCeAjslh5mtZI67ZrsEWfdKqDp8FRTVudMNa6oV2offr-_DK6R0t1rIa5Qf-W1rTFtA72nJw43fR48Zdj8nq3eJk_ZMvV_eP8dplVuZQyy4VBMMKiKx0KYyUvc2ntzBQSJYPZbCp4JQxUIHPHKuGmlQTLXIEmH8LwMbk63O1ieN9in9QmbKMfXioOnAGHQopBXR9UFUPfR3Sqi3Wr404xUPuS1FCS2pc00OxAP-oGd_869fy0-PU_gKxp9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031030785</pqid></control><display><type>article</type><title>On the implementation of a material point‐based arc‐length method</title><source>Wiley Journals</source><creator>Gavin, Nathan D. ; Pretti, Giuliano ; Coombs, William M. ; Brigham, John C. ; Augarde, Charles E.</creator><creatorcontrib>Gavin, Nathan D. ; Pretti, Giuliano ; Coombs, William M. ; Brigham, John C. ; Augarde, Charles E.</creatorcontrib><description>Summary
The material point method is a versatile technique which can be used to solve various types of solid mechanics problems, especially those involving large deformations. However, the capability of the material point method to track a load‐displacement response can deteriorate once a limit point, such as snap‐through or snap‐back, in the response is encountered. One way of overcoming this is to use path following techniques, such as an arc‐length method. This technique is well established in finite element analysis but not within any material point method formulation. This paper provides for the first time an arc‐length controlled implicit, quasi‐static material point method. The modifications to the standard arc‐length scheme to allow for the stable execution of an arc‐length solver within the material point method are detailed. The capability of the material point‐based arc‐length method is demonstrated through a number of problems, which include linear elastic, non‐linear elastic, linear elastic‐perfectly plastic and linear elastic‐plastic softening material behaviour under large deformations. The techniques presented in this paper are essential for arc‐length techniques to be applied effectively to the material point method and the combination of these techniques makes the method suitable for new problems that cannot be solved with existing implicit material point approaches.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7438</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>arc‐length methods ; Elastic deformation ; elastoplasticity ; Finite element method ; large deformation mechanics ; material point method ; snap‐through ; Solid mechanics ; Trajectory planning</subject><ispartof>International journal for numerical methods in engineering, 2024-05, Vol.125 (9), p.n/a</ispartof><rights>2024 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2888-25be0b5def9fe5bd83928dd6b78e81066453c5b0c082f1c5f4c80d1f7eb2d1fb3</cites><orcidid>0000-0003-1572-8283 ; 0000-0003-2099-1676 ; 0000-0003-2756-9718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7438$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7438$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gavin, Nathan D.</creatorcontrib><creatorcontrib>Pretti, Giuliano</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Brigham, John C.</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><title>On the implementation of a material point‐based arc‐length method</title><title>International journal for numerical methods in engineering</title><description>Summary
The material point method is a versatile technique which can be used to solve various types of solid mechanics problems, especially those involving large deformations. However, the capability of the material point method to track a load‐displacement response can deteriorate once a limit point, such as snap‐through or snap‐back, in the response is encountered. One way of overcoming this is to use path following techniques, such as an arc‐length method. This technique is well established in finite element analysis but not within any material point method formulation. This paper provides for the first time an arc‐length controlled implicit, quasi‐static material point method. The modifications to the standard arc‐length scheme to allow for the stable execution of an arc‐length solver within the material point method are detailed. The capability of the material point‐based arc‐length method is demonstrated through a number of problems, which include linear elastic, non‐linear elastic, linear elastic‐perfectly plastic and linear elastic‐plastic softening material behaviour under large deformations. The techniques presented in this paper are essential for arc‐length techniques to be applied effectively to the material point method and the combination of these techniques makes the method suitable for new problems that cannot be solved with existing implicit material point approaches.</description><subject>arc‐length methods</subject><subject>Elastic deformation</subject><subject>elastoplasticity</subject><subject>Finite element method</subject><subject>large deformation mechanics</subject><subject>material point method</subject><subject>snap‐through</subject><subject>Solid mechanics</subject><subject>Trajectory planning</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10M9KAzEQBvAgCtYq-AgBL162TjZNN3uUUv9AtRc9h2QzsVt2kzWbIr35CD6jT-LWevX0DcyPGfgIuWQwYQD5jW9xUky5PCIjBmWRQQ7FMRkNqzITpWSn5KzvNwCMCeAjslh5mtZI67ZrsEWfdKqDp8FRTVudMNa6oV2offr-_DK6R0t1rIa5Qf-W1rTFtA72nJw43fR48Zdj8nq3eJk_ZMvV_eP8dplVuZQyy4VBMMKiKx0KYyUvc2ntzBQSJYPZbCp4JQxUIHPHKuGmlQTLXIEmH8LwMbk63O1ieN9in9QmbKMfXioOnAGHQopBXR9UFUPfR3Sqi3Wr404xUPuS1FCS2pc00OxAP-oGd_869fy0-PU_gKxp9w</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Gavin, Nathan D.</creator><creator>Pretti, Giuliano</creator><creator>Coombs, William M.</creator><creator>Brigham, John C.</creator><creator>Augarde, Charles E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1572-8283</orcidid><orcidid>https://orcid.org/0000-0003-2099-1676</orcidid><orcidid>https://orcid.org/0000-0003-2756-9718</orcidid></search><sort><creationdate>20240515</creationdate><title>On the implementation of a material point‐based arc‐length method</title><author>Gavin, Nathan D. ; Pretti, Giuliano ; Coombs, William M. ; Brigham, John C. ; Augarde, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2888-25be0b5def9fe5bd83928dd6b78e81066453c5b0c082f1c5f4c80d1f7eb2d1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>arc‐length methods</topic><topic>Elastic deformation</topic><topic>elastoplasticity</topic><topic>Finite element method</topic><topic>large deformation mechanics</topic><topic>material point method</topic><topic>snap‐through</topic><topic>Solid mechanics</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavin, Nathan D.</creatorcontrib><creatorcontrib>Pretti, Giuliano</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Brigham, John C.</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavin, Nathan D.</au><au>Pretti, Giuliano</au><au>Coombs, William M.</au><au>Brigham, John C.</au><au>Augarde, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the implementation of a material point‐based arc‐length method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>125</volume><issue>9</issue><epage>n/a</epage><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
The material point method is a versatile technique which can be used to solve various types of solid mechanics problems, especially those involving large deformations. However, the capability of the material point method to track a load‐displacement response can deteriorate once a limit point, such as snap‐through or snap‐back, in the response is encountered. One way of overcoming this is to use path following techniques, such as an arc‐length method. This technique is well established in finite element analysis but not within any material point method formulation. This paper provides for the first time an arc‐length controlled implicit, quasi‐static material point method. The modifications to the standard arc‐length scheme to allow for the stable execution of an arc‐length solver within the material point method are detailed. The capability of the material point‐based arc‐length method is demonstrated through a number of problems, which include linear elastic, non‐linear elastic, linear elastic‐perfectly plastic and linear elastic‐plastic softening material behaviour under large deformations. The techniques presented in this paper are essential for arc‐length techniques to be applied effectively to the material point method and the combination of these techniques makes the method suitable for new problems that cannot be solved with existing implicit material point approaches.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.7438</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1572-8283</orcidid><orcidid>https://orcid.org/0000-0003-2099-1676</orcidid><orcidid>https://orcid.org/0000-0003-2756-9718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2024-05, Vol.125 (9), p.n/a |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_3031030785 |
source | Wiley Journals |
subjects | arc‐length methods Elastic deformation elastoplasticity Finite element method large deformation mechanics material point method snap‐through Solid mechanics Trajectory planning |
title | On the implementation of a material point‐based arc‐length method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20implementation%20of%20a%20material%20point%E2%80%90based%20arc%E2%80%90length%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Gavin,%20Nathan%20D.&rft.date=2024-05-15&rft.volume=125&rft.issue=9&rft.epage=n/a&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7438&rft_dat=%3Cproquest_cross%3E3031030785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031030785&rft_id=info:pmid/&rfr_iscdi=true |