Mitigating Electronic Conduction in Ceria‐Based Electrolytes via External Structure Design
Doped ceria electrolytes are the state of the art low‐temperature solid oxide electrolytes because of their high ionic conductivity and good material compatibility. However, cerium tends to reduce once exposed to reducing environments, leading to an increase in electronic conduction and a decrease i...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-04, Vol.34 (14), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Robinson, Ian A. Huang, Yi‐Lin Horlick, Samuel A. Obenland, Jonathan Robinson, Nicholas Gritton, J. Evans Hussain, A. Mohammed Wachsman, Eric D. |
description | Doped ceria electrolytes are the state of the art low‐temperature solid oxide electrolytes because of their high ionic conductivity and good material compatibility. However, cerium tends to reduce once exposed to reducing environments, leading to an increase in electronic conduction and a decrease in efficiency. Here, the leakage current is mitigated in ceria‐based electrolytes by controlling the defect chemistry through an engineered cathode side microstructure. This functional layer effectively addresses the problematic electronic conduction issue in ceria‐based electrolytes without adding significant ohmic resistance and increases the ionic transference tO2−$t_{{{\mathrm{O}}}^{2 - }}$ number to over 0.93 in a thin 20 µm ceria‐based electrolyte at 500 °C, compared to a tO2−$t_{{{\mathrm{O}}}^{2 - }}$ of 0.8 for an unmodified one. Based on this design, solid oxide fuel cells (SOFCs) are further demonstrated with the remarkable peak power density of 550 mW at 500 °C and excellent stability for over 2000 h. This approach enables a potential breakthrough in the development of ceria‐based low‐temperature solid oxide electrolytes.
Herein a simple porous functional layer that mitigates the problematic electronic conduction issue of ceria‐based electrolytes is demonstrated, increasing the ionic transference number without adding significant ohmic resistance. The resulting low‐temperature SOFCs exhibit remarkable power density and stability, thus enabling a potential breakthrough in the development of ceria‐based SOFCs and SOECs. |
doi_str_mv | 10.1002/adfm.202308123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030975858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030975858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-c3176656419be13a2bab2d8d77451e598e8d619f470968634c2b2848d05b2e823</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltibvFPYjtjSVtAasUASAxIlpPcVK7SpNgO0I1H4Bl5ElIVyshyvzucc3X1IXROyZASwi5NUa6GjDBOFGX8APWooGLACVOH-50-HaMT75eEUCl51EPPcxvswgRbL_Ckgjy4prY5Tpu6aPNgmxrbGqfgrPn6-LwyHopfrNoE8PjVGjx5D-BqU-H74DqpdYDH4O2iPkVHpak8nP1kHz1OJw_pzWB2d32bjmaDnMeSd5NKIWIR0SQDyg3LTMYKVUgZxRTiRIEqBE3KSJJEKMGjnGVMRaogccZAMd5HF7u7a9e8tOCDXjbt9iOvOeEkkbGKVUcNd1TuGu8dlHrt7Mq4jaZEbxvU2wb1vsFOSHbCm61g8w-tR-Pp_M_9Bo_HdVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030975858</pqid></control><display><type>article</type><title>Mitigating Electronic Conduction in Ceria‐Based Electrolytes via External Structure Design</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Robinson, Ian A. ; Huang, Yi‐Lin ; Horlick, Samuel A. ; Obenland, Jonathan ; Robinson, Nicholas ; Gritton, J. Evans ; Hussain, A. Mohammed ; Wachsman, Eric D.</creator><creatorcontrib>Robinson, Ian A. ; Huang, Yi‐Lin ; Horlick, Samuel A. ; Obenland, Jonathan ; Robinson, Nicholas ; Gritton, J. Evans ; Hussain, A. Mohammed ; Wachsman, Eric D.</creatorcontrib><description>Doped ceria electrolytes are the state of the art low‐temperature solid oxide electrolytes because of their high ionic conductivity and good material compatibility. However, cerium tends to reduce once exposed to reducing environments, leading to an increase in electronic conduction and a decrease in efficiency. Here, the leakage current is mitigated in ceria‐based electrolytes by controlling the defect chemistry through an engineered cathode side microstructure. This functional layer effectively addresses the problematic electronic conduction issue in ceria‐based electrolytes without adding significant ohmic resistance and increases the ionic transference tO2−$t_{{{\mathrm{O}}}^{2 - }}$ number to over 0.93 in a thin 20 µm ceria‐based electrolyte at 500 °C, compared to a tO2−$t_{{{\mathrm{O}}}^{2 - }}$ of 0.8 for an unmodified one. Based on this design, solid oxide fuel cells (SOFCs) are further demonstrated with the remarkable peak power density of 550 mW at 500 °C and excellent stability for over 2000 h. This approach enables a potential breakthrough in the development of ceria‐based low‐temperature solid oxide electrolytes.
Herein a simple porous functional layer that mitigates the problematic electronic conduction issue of ceria‐based electrolytes is demonstrated, increasing the ionic transference number without adding significant ohmic resistance. The resulting low‐temperature SOFCs exhibit remarkable power density and stability, thus enabling a potential breakthrough in the development of ceria‐based SOFCs and SOECs.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308123</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>cathode ; Cerium oxides ; durability ; Electrolytes ; Electrolytic cells ; Ion currents ; Leakage current ; Molten salt electrolytes ; ORR ; SOFC ; Solid electrolytes ; Solid oxide fuel cells ; surface modification</subject><ispartof>Advanced functional materials, 2024-04, Vol.34 (14), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-c3176656419be13a2bab2d8d77451e598e8d619f470968634c2b2848d05b2e823</citedby><cites>FETCH-LOGICAL-c3573-c3176656419be13a2bab2d8d77451e598e8d619f470968634c2b2848d05b2e823</cites><orcidid>0000-0002-0667-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202308123$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202308123$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Robinson, Ian A.</creatorcontrib><creatorcontrib>Huang, Yi‐Lin</creatorcontrib><creatorcontrib>Horlick, Samuel A.</creatorcontrib><creatorcontrib>Obenland, Jonathan</creatorcontrib><creatorcontrib>Robinson, Nicholas</creatorcontrib><creatorcontrib>Gritton, J. Evans</creatorcontrib><creatorcontrib>Hussain, A. Mohammed</creatorcontrib><creatorcontrib>Wachsman, Eric D.</creatorcontrib><title>Mitigating Electronic Conduction in Ceria‐Based Electrolytes via External Structure Design</title><title>Advanced functional materials</title><description>Doped ceria electrolytes are the state of the art low‐temperature solid oxide electrolytes because of their high ionic conductivity and good material compatibility. However, cerium tends to reduce once exposed to reducing environments, leading to an increase in electronic conduction and a decrease in efficiency. Here, the leakage current is mitigated in ceria‐based electrolytes by controlling the defect chemistry through an engineered cathode side microstructure. This functional layer effectively addresses the problematic electronic conduction issue in ceria‐based electrolytes without adding significant ohmic resistance and increases the ionic transference tO2−$t_{{{\mathrm{O}}}^{2 - }}$ number to over 0.93 in a thin 20 µm ceria‐based electrolyte at 500 °C, compared to a tO2−$t_{{{\mathrm{O}}}^{2 - }}$ of 0.8 for an unmodified one. Based on this design, solid oxide fuel cells (SOFCs) are further demonstrated with the remarkable peak power density of 550 mW at 500 °C and excellent stability for over 2000 h. This approach enables a potential breakthrough in the development of ceria‐based low‐temperature solid oxide electrolytes.
Herein a simple porous functional layer that mitigates the problematic electronic conduction issue of ceria‐based electrolytes is demonstrated, increasing the ionic transference number without adding significant ohmic resistance. The resulting low‐temperature SOFCs exhibit remarkable power density and stability, thus enabling a potential breakthrough in the development of ceria‐based SOFCs and SOECs.</description><subject>cathode</subject><subject>Cerium oxides</subject><subject>durability</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ion currents</subject><subject>Leakage current</subject><subject>Molten salt electrolytes</subject><subject>ORR</subject><subject>SOFC</subject><subject>Solid electrolytes</subject><subject>Solid oxide fuel cells</subject><subject>surface modification</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1OwzAURi0EEqWwMltibvFPYjtjSVtAasUASAxIlpPcVK7SpNgO0I1H4Bl5ElIVyshyvzucc3X1IXROyZASwi5NUa6GjDBOFGX8APWooGLACVOH-50-HaMT75eEUCl51EPPcxvswgRbL_Ckgjy4prY5Tpu6aPNgmxrbGqfgrPn6-LwyHopfrNoE8PjVGjx5D-BqU-H74DqpdYDH4O2iPkVHpak8nP1kHz1OJw_pzWB2d32bjmaDnMeSd5NKIWIR0SQDyg3LTMYKVUgZxRTiRIEqBE3KSJJEKMGjnGVMRaogccZAMd5HF7u7a9e8tOCDXjbt9iOvOeEkkbGKVUcNd1TuGu8dlHrt7Mq4jaZEbxvU2wb1vsFOSHbCm61g8w-tR-Pp_M_9Bo_HdVc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Robinson, Ian A.</creator><creator>Huang, Yi‐Lin</creator><creator>Horlick, Samuel A.</creator><creator>Obenland, Jonathan</creator><creator>Robinson, Nicholas</creator><creator>Gritton, J. Evans</creator><creator>Hussain, A. Mohammed</creator><creator>Wachsman, Eric D.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0667-1927</orcidid></search><sort><creationdate>20240401</creationdate><title>Mitigating Electronic Conduction in Ceria‐Based Electrolytes via External Structure Design</title><author>Robinson, Ian A. ; Huang, Yi‐Lin ; Horlick, Samuel A. ; Obenland, Jonathan ; Robinson, Nicholas ; Gritton, J. Evans ; Hussain, A. Mohammed ; Wachsman, Eric D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-c3176656419be13a2bab2d8d77451e598e8d619f470968634c2b2848d05b2e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cathode</topic><topic>Cerium oxides</topic><topic>durability</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ion currents</topic><topic>Leakage current</topic><topic>Molten salt electrolytes</topic><topic>ORR</topic><topic>SOFC</topic><topic>Solid electrolytes</topic><topic>Solid oxide fuel cells</topic><topic>surface modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Ian A.</creatorcontrib><creatorcontrib>Huang, Yi‐Lin</creatorcontrib><creatorcontrib>Horlick, Samuel A.</creatorcontrib><creatorcontrib>Obenland, Jonathan</creatorcontrib><creatorcontrib>Robinson, Nicholas</creatorcontrib><creatorcontrib>Gritton, J. Evans</creatorcontrib><creatorcontrib>Hussain, A. Mohammed</creatorcontrib><creatorcontrib>Wachsman, Eric D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Ian A.</au><au>Huang, Yi‐Lin</au><au>Horlick, Samuel A.</au><au>Obenland, Jonathan</au><au>Robinson, Nicholas</au><au>Gritton, J. Evans</au><au>Hussain, A. Mohammed</au><au>Wachsman, Eric D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Electronic Conduction in Ceria‐Based Electrolytes via External Structure Design</atitle><jtitle>Advanced functional materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Doped ceria electrolytes are the state of the art low‐temperature solid oxide electrolytes because of their high ionic conductivity and good material compatibility. However, cerium tends to reduce once exposed to reducing environments, leading to an increase in electronic conduction and a decrease in efficiency. Here, the leakage current is mitigated in ceria‐based electrolytes by controlling the defect chemistry through an engineered cathode side microstructure. This functional layer effectively addresses the problematic electronic conduction issue in ceria‐based electrolytes without adding significant ohmic resistance and increases the ionic transference tO2−$t_{{{\mathrm{O}}}^{2 - }}$ number to over 0.93 in a thin 20 µm ceria‐based electrolyte at 500 °C, compared to a tO2−$t_{{{\mathrm{O}}}^{2 - }}$ of 0.8 for an unmodified one. Based on this design, solid oxide fuel cells (SOFCs) are further demonstrated with the remarkable peak power density of 550 mW at 500 °C and excellent stability for over 2000 h. This approach enables a potential breakthrough in the development of ceria‐based low‐temperature solid oxide electrolytes.
Herein a simple porous functional layer that mitigates the problematic electronic conduction issue of ceria‐based electrolytes is demonstrated, increasing the ionic transference number without adding significant ohmic resistance. The resulting low‐temperature SOFCs exhibit remarkable power density and stability, thus enabling a potential breakthrough in the development of ceria‐based SOFCs and SOECs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308123</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0667-1927</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-04, Vol.34 (14), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3030975858 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cathode Cerium oxides durability Electrolytes Electrolytic cells Ion currents Leakage current Molten salt electrolytes ORR SOFC Solid electrolytes Solid oxide fuel cells surface modification |
title | Mitigating Electronic Conduction in Ceria‐Based Electrolytes via External Structure Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Electronic%20Conduction%20in%20Ceria%E2%80%90Based%20Electrolytes%20via%20External%20Structure%20Design&rft.jtitle=Advanced%20functional%20materials&rft.au=Robinson,%20Ian%20A.&rft.date=2024-04-01&rft.volume=34&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308123&rft_dat=%3Cproquest_cross%3E3030975858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030975858&rft_id=info:pmid/&rfr_iscdi=true |