Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions

In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2024-04, Vol.89 (2), p.54, Article 54
1. Verfasser: Munteanu, Ionuţ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 54
container_title Applied mathematics & optimization
container_volume 89
creator Munteanu, Ionuţ
description In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic system into a random deterministic one. We split the latter into two parts: the Navier-Stokes part and the Cahn-Hilliard part, respectively. The rescale operators possess good properties which allow to show that the rescaled Navier-Stokes equations have a unique solution, by appealing to δ - monotone operators theory. While, well-posedness of the Cahn-Hilliard part is proved via a fixed point argument. Then, again a fixed point argument is used to prove global in time existence of a unique solution to the initial system. All the results are under the requirement that the initial data is in a certain small neighbourhood of the origin.
doi_str_mv 10.1007/s00245-024-10121-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030949476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030949476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-10f598420d6ab2b5af034acf792c08f476dd6b3e1dae9533f404a99f3e08ef943</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wsscUwjp2kXqLyKFIFSBSxtJxkTA0hDnZK1b_HpUjs2MxszrmjuYSccDjnAOVFBMhkztJgHHjG2WqHjLgUGYMCil0yAlA5kwUv9slBjG-QeFGIEelfsG1Z7yM2HcZIrQ90WCCdmEXHpq5tnQkNuzdfDgN7Gvw7Rnr9uTSD812kjxiGZaiwodWa3gbTOOwGNl_3SO-9i3hGXUfnK0-v3Ad2ceMckT1r2ojHv_uQPN9czydTNnu4vZtczlidlTCkL2yuxjKDpjBVVuXGgpCmtqXKahhbWRZNU1QCeWNQ5UJYCdIoZQXCGK2S4pCcbnP74D-XGAf95pehSye1AAFKqpSRqGxL1cHHGNDqPrgPE9aag940q7fN6jT0T7N6lSSxlWKCu1cMf9H_WN9IU3zc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030949476</pqid></control><display><type>article</type><title>Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Munteanu, Ionuţ</creator><creatorcontrib>Munteanu, Ionuţ</creatorcontrib><description>In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic system into a random deterministic one. We split the latter into two parts: the Navier-Stokes part and the Cahn-Hilliard part, respectively. The rescale operators possess good properties which allow to show that the rescaled Navier-Stokes equations have a unique solution, by appealing to δ - monotone operators theory. While, well-posedness of the Cahn-Hilliard part is proved via a fixed point argument. Then, again a fixed point argument is used to prove global in time existence of a unique solution to the initial system. All the results are under the requirement that the initial data is in a certain small neighbourhood of the origin.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-024-10121-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Calculus of Variations and Optimal Control; Optimization ; Control ; Fixed points (mathematics) ; Fluid flow ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Numerical and Computational Physics ; Operators ; Optimization ; Phase transitions ; Rescaling ; Simulation ; Stochastic systems ; Systems Theory ; Theoretical ; Uniqueness ; Velocity ; Viscosity ; Well posed problems</subject><ispartof>Applied mathematics &amp; optimization, 2024-04, Vol.89 (2), p.54, Article 54</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-10f598420d6ab2b5af034acf792c08f476dd6b3e1dae9533f404a99f3e08ef943</cites><orcidid>0000-0002-0252-8517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-024-10121-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-024-10121-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Munteanu, Ionuţ</creatorcontrib><title>Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic system into a random deterministic one. We split the latter into two parts: the Navier-Stokes part and the Cahn-Hilliard part, respectively. The rescale operators possess good properties which allow to show that the rescaled Navier-Stokes equations have a unique solution, by appealing to δ - monotone operators theory. While, well-posedness of the Cahn-Hilliard part is proved via a fixed point argument. Then, again a fixed point argument is used to prove global in time existence of a unique solution to the initial system. All the results are under the requirement that the initial data is in a certain small neighbourhood of the origin.</description><subject>Applied mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Fixed points (mathematics)</subject><subject>Fluid flow</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Numerical and Computational Physics</subject><subject>Operators</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Rescaling</subject><subject>Simulation</subject><subject>Stochastic systems</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Uniqueness</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Well posed problems</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wsscUwjp2kXqLyKFIFSBSxtJxkTA0hDnZK1b_HpUjs2MxszrmjuYSccDjnAOVFBMhkztJgHHjG2WqHjLgUGYMCil0yAlA5kwUv9slBjG-QeFGIEelfsG1Z7yM2HcZIrQ90WCCdmEXHpq5tnQkNuzdfDgN7Gvw7Rnr9uTSD812kjxiGZaiwodWa3gbTOOwGNl_3SO-9i3hGXUfnK0-v3Ad2ceMckT1r2ojHv_uQPN9czydTNnu4vZtczlidlTCkL2yuxjKDpjBVVuXGgpCmtqXKahhbWRZNU1QCeWNQ5UJYCdIoZQXCGK2S4pCcbnP74D-XGAf95pehSye1AAFKqpSRqGxL1cHHGNDqPrgPE9aag940q7fN6jT0T7N6lSSxlWKCu1cMf9H_WN9IU3zc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Munteanu, Ionuţ</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0252-8517</orcidid></search><sort><creationdate>20240401</creationdate><title>Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions</title><author>Munteanu, Ionuţ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-10f598420d6ab2b5af034acf792c08f476dd6b3e1dae9533f404a99f3e08ef943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Fixed points (mathematics)</topic><topic>Fluid flow</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Numerical and Computational Physics</topic><topic>Operators</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Rescaling</topic><topic>Simulation</topic><topic>Stochastic systems</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Uniqueness</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munteanu, Ionuţ</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munteanu, Ionuţ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>89</volume><issue>2</issue><spage>54</spage><pages>54-</pages><artnum>54</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic system into a random deterministic one. We split the latter into two parts: the Navier-Stokes part and the Cahn-Hilliard part, respectively. The rescale operators possess good properties which allow to show that the rescaled Navier-Stokes equations have a unique solution, by appealing to δ - monotone operators theory. While, well-posedness of the Cahn-Hilliard part is proved via a fixed point argument. Then, again a fixed point argument is used to prove global in time existence of a unique solution to the initial system. All the results are under the requirement that the initial data is in a certain small neighbourhood of the origin.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-024-10121-w</doi><orcidid>https://orcid.org/0000-0002-0252-8517</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2024-04, Vol.89 (2), p.54, Article 54
issn 0095-4616
1432-0606
language eng
recordid cdi_proquest_journals_3030949476
source SpringerLink Journals - AutoHoldings
subjects Applied mathematics
Calculus of Variations and Optimal Control
Optimization
Control
Fixed points (mathematics)
Fluid flow
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Navier-Stokes equations
Numerical and Computational Physics
Operators
Optimization
Phase transitions
Rescaling
Simulation
Stochastic systems
Systems Theory
Theoretical
Uniqueness
Velocity
Viscosity
Well posed problems
title Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-posedness%20for%20the%20Cahn-Hilliard-Navier-Stokes%20Equations%20Perturbed%20by%20Gradient-Type%20Noise,%20in%20Two%20Dimensions&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Munteanu,%20Ionu%C5%A3&rft.date=2024-04-01&rft.volume=89&rft.issue=2&rft.spage=54&rft.pages=54-&rft.artnum=54&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-024-10121-w&rft_dat=%3Cproquest_cross%3E3030949476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030949476&rft_id=info:pmid/&rfr_iscdi=true