Asymptotic comparison of negative multinomial and multivariate normal experiments

This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a metic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Neerlandica 2024-05, Vol.78 (2), p.427-440
Hauptverfasser: Genest, Christian, Ouimet, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 2
container_start_page 427
container_title Statistica Neerlandica
container_volume 78
creator Genest, Christian
Ouimet, Frédéric
description This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.
doi_str_mv 10.1111/stan.12328
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030915222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030915222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX_4KCN6EzL2mT9jiGTmEo4jyHLE2ko01qkk3335tZz77L4z2-94MPoWvAM0hxF6K0MyCUVCdoAgXjeV3y4hRNMKZ1jgtMztFFCFuMgdcFm6DXeTj0Q3SxVZly_SB9G5zNnMms_pCx3eus33Wxta5vZZdJ24z1PoEy6sw636e-_h60b3ttY7hEZ0Z2QV_95Sl6f7hfLx7z1cvyaTFf5YpSXuVcY8Urw6XkG9PQxhAiCTAGZVPJDaiSbsAwKIAToytOuWmAES1xWbFCSUOn6GbcO3j3udMhiq3beZtOCooprqEkhCTqdqSUdyF4bcSQ_pT-IACLozJxVCZ-lSUYRvir7fThH1K8refP48wPknRwIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030915222</pqid></control><display><type>article</type><title>Asymptotic comparison of negative multinomial and multivariate normal experiments</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Genest, Christian ; Ouimet, Frédéric</creator><creatorcontrib>Genest, Christian ; Ouimet, Frédéric</creatorcontrib><description>This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/stan.12328</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; asymptotic theory ; comparison of experiments ; Le Cam distance ; local limit theorem ; Mathematical analysis ; Multivariate analysis ; multivariate normal distribution ; negative multinomial distribution ; Normal distribution ; Statistical analysis ; Upper bounds</subject><ispartof>Statistica Neerlandica, 2024-05, Vol.78 (2), p.427-440</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of Netherlands Society for Statistics and Operations Research.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</citedby><cites>FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</cites><orcidid>0000-0002-1764-0202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fstan.12328$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fstan.12328$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ouimet, Frédéric</creatorcontrib><title>Asymptotic comparison of negative multinomial and multivariate normal experiments</title><title>Statistica Neerlandica</title><description>This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.</description><subject>Approximation</subject><subject>asymptotic theory</subject><subject>comparison of experiments</subject><subject>Le Cam distance</subject><subject>local limit theorem</subject><subject>Mathematical analysis</subject><subject>Multivariate analysis</subject><subject>multivariate normal distribution</subject><subject>negative multinomial distribution</subject><subject>Normal distribution</subject><subject>Statistical analysis</subject><subject>Upper bounds</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM9LwzAUgIMoOKcX_4KCN6EzL2mT9jiGTmEo4jyHLE2ko01qkk3335tZz77L4z2-94MPoWvAM0hxF6K0MyCUVCdoAgXjeV3y4hRNMKZ1jgtMztFFCFuMgdcFm6DXeTj0Q3SxVZly_SB9G5zNnMms_pCx3eus33Wxta5vZZdJ24z1PoEy6sw636e-_h60b3ttY7hEZ0Z2QV_95Sl6f7hfLx7z1cvyaTFf5YpSXuVcY8Urw6XkG9PQxhAiCTAGZVPJDaiSbsAwKIAToytOuWmAES1xWbFCSUOn6GbcO3j3udMhiq3beZtOCooprqEkhCTqdqSUdyF4bcSQ_pT-IACLozJxVCZ-lSUYRvir7fThH1K8refP48wPknRwIA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Genest, Christian</creator><creator>Ouimet, Frédéric</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1764-0202</orcidid></search><sort><creationdate>202405</creationdate><title>Asymptotic comparison of negative multinomial and multivariate normal experiments</title><author>Genest, Christian ; Ouimet, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>asymptotic theory</topic><topic>comparison of experiments</topic><topic>Le Cam distance</topic><topic>local limit theorem</topic><topic>Mathematical analysis</topic><topic>Multivariate analysis</topic><topic>multivariate normal distribution</topic><topic>negative multinomial distribution</topic><topic>Normal distribution</topic><topic>Statistical analysis</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ouimet, Frédéric</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genest, Christian</au><au>Ouimet, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic comparison of negative multinomial and multivariate normal experiments</atitle><jtitle>Statistica Neerlandica</jtitle><date>2024-05</date><risdate>2024</risdate><volume>78</volume><issue>2</issue><spage>427</spage><epage>440</epage><pages>427-440</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/stan.12328</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1764-0202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-0402
ispartof Statistica Neerlandica, 2024-05, Vol.78 (2), p.427-440
issn 0039-0402
1467-9574
language eng
recordid cdi_proquest_journals_3030915222
source Wiley Online Library Journals Frontfile Complete
subjects Approximation
asymptotic theory
comparison of experiments
Le Cam distance
local limit theorem
Mathematical analysis
Multivariate analysis
multivariate normal distribution
negative multinomial distribution
Normal distribution
Statistical analysis
Upper bounds
title Asymptotic comparison of negative multinomial and multivariate normal experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20comparison%20of%20negative%20multinomial%20and%20multivariate%20normal%20experiments&rft.jtitle=Statistica%20Neerlandica&rft.au=Genest,%20Christian&rft.date=2024-05&rft.volume=78&rft.issue=2&rft.spage=427&rft.epage=440&rft.pages=427-440&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/stan.12328&rft_dat=%3Cproquest_cross%3E3030915222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030915222&rft_id=info:pmid/&rfr_iscdi=true