Asymptotic comparison of negative multinomial and multivariate normal experiments
This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a metic...
Gespeichert in:
Veröffentlicht in: | Statistica Neerlandica 2024-05, Vol.78 (2), p.427-440 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 2 |
container_start_page | 427 |
container_title | Statistica Neerlandica |
container_volume | 78 |
creator | Genest, Christian Ouimet, Frédéric |
description | This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue. |
doi_str_mv | 10.1111/stan.12328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030915222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030915222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX_4KCN6EzL2mT9jiGTmEo4jyHLE2ko01qkk3335tZz77L4z2-94MPoWvAM0hxF6K0MyCUVCdoAgXjeV3y4hRNMKZ1jgtMztFFCFuMgdcFm6DXeTj0Q3SxVZly_SB9G5zNnMms_pCx3eus33Wxta5vZZdJ24z1PoEy6sw636e-_h60b3ttY7hEZ0Z2QV_95Sl6f7hfLx7z1cvyaTFf5YpSXuVcY8Urw6XkG9PQxhAiCTAGZVPJDaiSbsAwKIAToytOuWmAES1xWbFCSUOn6GbcO3j3udMhiq3beZtOCooprqEkhCTqdqSUdyF4bcSQ_pT-IACLozJxVCZ-lSUYRvir7fThH1K8refP48wPknRwIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030915222</pqid></control><display><type>article</type><title>Asymptotic comparison of negative multinomial and multivariate normal experiments</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Genest, Christian ; Ouimet, Frédéric</creator><creatorcontrib>Genest, Christian ; Ouimet, Frédéric</creatorcontrib><description>This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/stan.12328</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; asymptotic theory ; comparison of experiments ; Le Cam distance ; local limit theorem ; Mathematical analysis ; Multivariate analysis ; multivariate normal distribution ; negative multinomial distribution ; Normal distribution ; Statistical analysis ; Upper bounds</subject><ispartof>Statistica Neerlandica, 2024-05, Vol.78 (2), p.427-440</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Netherlands Society for Statistics and Operations Research.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</citedby><cites>FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</cites><orcidid>0000-0002-1764-0202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fstan.12328$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fstan.12328$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ouimet, Frédéric</creatorcontrib><title>Asymptotic comparison of negative multinomial and multivariate normal experiments</title><title>Statistica Neerlandica</title><description>This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.</description><subject>Approximation</subject><subject>asymptotic theory</subject><subject>comparison of experiments</subject><subject>Le Cam distance</subject><subject>local limit theorem</subject><subject>Mathematical analysis</subject><subject>Multivariate analysis</subject><subject>multivariate normal distribution</subject><subject>negative multinomial distribution</subject><subject>Normal distribution</subject><subject>Statistical analysis</subject><subject>Upper bounds</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM9LwzAUgIMoOKcX_4KCN6EzL2mT9jiGTmEo4jyHLE2ko01qkk3335tZz77L4z2-94MPoWvAM0hxF6K0MyCUVCdoAgXjeV3y4hRNMKZ1jgtMztFFCFuMgdcFm6DXeTj0Q3SxVZly_SB9G5zNnMms_pCx3eus33Wxta5vZZdJ24z1PoEy6sw636e-_h60b3ttY7hEZ0Z2QV_95Sl6f7hfLx7z1cvyaTFf5YpSXuVcY8Urw6XkG9PQxhAiCTAGZVPJDaiSbsAwKIAToytOuWmAES1xWbFCSUOn6GbcO3j3udMhiq3beZtOCooprqEkhCTqdqSUdyF4bcSQ_pT-IACLozJxVCZ-lSUYRvir7fThH1K8refP48wPknRwIA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Genest, Christian</creator><creator>Ouimet, Frédéric</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1764-0202</orcidid></search><sort><creationdate>202405</creationdate><title>Asymptotic comparison of negative multinomial and multivariate normal experiments</title><author>Genest, Christian ; Ouimet, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-7e0c78f7aa7bfd3df22a216615d8ab1c53b1f614172fe8737fd162ea05864caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>asymptotic theory</topic><topic>comparison of experiments</topic><topic>Le Cam distance</topic><topic>local limit theorem</topic><topic>Mathematical analysis</topic><topic>Multivariate analysis</topic><topic>multivariate normal distribution</topic><topic>negative multinomial distribution</topic><topic>Normal distribution</topic><topic>Statistical analysis</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Genest, Christian</creatorcontrib><creatorcontrib>Ouimet, Frédéric</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genest, Christian</au><au>Ouimet, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic comparison of negative multinomial and multivariate normal experiments</atitle><jtitle>Statistica Neerlandica</jtitle><date>2024-05</date><risdate>2024</risdate><volume>78</volume><issue>2</issue><spage>427</spage><epage>440</epage><pages>427-440</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean–covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/stan.12328</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1764-0202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-0402 |
ispartof | Statistica Neerlandica, 2024-05, Vol.78 (2), p.427-440 |
issn | 0039-0402 1467-9574 |
language | eng |
recordid | cdi_proquest_journals_3030915222 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Approximation asymptotic theory comparison of experiments Le Cam distance local limit theorem Mathematical analysis Multivariate analysis multivariate normal distribution negative multinomial distribution Normal distribution Statistical analysis Upper bounds |
title | Asymptotic comparison of negative multinomial and multivariate normal experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20comparison%20of%20negative%20multinomial%20and%20multivariate%20normal%20experiments&rft.jtitle=Statistica%20Neerlandica&rft.au=Genest,%20Christian&rft.date=2024-05&rft.volume=78&rft.issue=2&rft.spage=427&rft.epage=440&rft.pages=427-440&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/stan.12328&rft_dat=%3Cproquest_cross%3E3030915222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030915222&rft_id=info:pmid/&rfr_iscdi=true |