Hot Deformation Behavior and Microstructure Evolution of 2Cr12Ni4Mo3VNbN Steel Used for Last‐Stage Large Blades of Steam Turbine
The hot deformation behavior and microstructure evolution of a recently developed 2Cr12Ni4Mo3VNbN martensitic stainless steel are examined through hot compression tests conducted within the temperature range of 900–1200 °C and the strain rate range of 0.01–10 s−1. The constitutive equation and proce...
Gespeichert in:
Veröffentlicht in: | Steel research international 2024-04, Vol.95 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Steel research international |
container_volume | 95 |
creator | Xin, Rui‐shan Zhou, Mao‐hua Wang, Hao‐yu Yu, Zhan‐yang Wu, Zhi‐wei Wang, Li‐wei He, Yi Kang, Ju |
description | The hot deformation behavior and microstructure evolution of a recently developed 2Cr12Ni4Mo3VNbN martensitic stainless steel are examined through hot compression tests conducted within the temperature range of 900–1200 °C and the strain rate range of 0.01–10 s−1. The constitutive equation and processing maps corresponding to hot deformation are established. The activation energy for hot deformation of 2Cr12Ni4Mo3VNbN steel is determined to be ≈457491.77 J mol−1. Simultaneously, the microstructure evolution during hot deformation is studied. Based on the processing maps and microstructure evolution analysis, it is concluded that the optimal windows for hot processing are within the temperature range of 1106–1150 °C and the strain rate range of 0.01–2.7 s−1, as well as at 1200 °C within the strain rate range of 1–2.7 s−1, exhibiting a power dissipation efficiency of 0.32. As the temperature increases and the strain rate decreases, the degree of dynamic recrystallization escalates.
2Cr12Ni4Mo3VNbN steel is a newly developed martensitic stainless steel used for last‐stage large blades of steam turbine. Herein, the hot deformation behavior and microstructure evolution of 2Cr12Ni4Mo3VNbN steel are investigated for the first time. Constitutive equations and hot‐processing maps of 2Cr12Ni4Mo3VNbN steel are established. Combined processing maps and microstructure evolution, the optimum windows of hot processing are obtained. |
doi_str_mv | 10.1002/srin.202300424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030915158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030915158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-3721f95b734049711b274d0549e925050eb801d356b42592f031176180b9bca63</originalsourceid><addsrcrecordid>eNqFkMtOwkAUhidGEwmydT2J6-KZSy-zFEQhgZoIGHfNlE61pHRwpsWwMz6Bz-iTOBWjS8_iXJLvPyfnR-icQJ8A0EtriqpPgTIATvkR6pAoEB7j_PHY9QEhHgsidop61q7BBYuiIOQd9D7WNb5WuTYbWRe6wgP1LHeFNlhWGZ4VK6NtbZpV3RiFRztdNt-UzjEdGkLjgs80e4jTGM9rpUq8tCrDbhueSlt_vn3Ma_mk3GBcHpQyU7bVOlZu8KIxaVGpM3SSy9Kq3k_touXNaDEce9O728nwauqtaEi5x0JKcuGnIePARUhISkOegc-FEtQHH1QaAcmYH6Sc-oLmwAgJAxJBKtKVDFgXXRz2bo1-aZStk7VuTOVOJgwYCOITP3JU_0C1n1uj8mRrio00-4RA0lqdtFYnv1Y7gTgIXotS7f-hk_n9JP7TfgF02oFr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030915158</pqid></control><display><type>article</type><title>Hot Deformation Behavior and Microstructure Evolution of 2Cr12Ni4Mo3VNbN Steel Used for Last‐Stage Large Blades of Steam Turbine</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xin, Rui‐shan ; Zhou, Mao‐hua ; Wang, Hao‐yu ; Yu, Zhan‐yang ; Wu, Zhi‐wei ; Wang, Li‐wei ; He, Yi ; Kang, Ju</creator><creatorcontrib>Xin, Rui‐shan ; Zhou, Mao‐hua ; Wang, Hao‐yu ; Yu, Zhan‐yang ; Wu, Zhi‐wei ; Wang, Li‐wei ; He, Yi ; Kang, Ju</creatorcontrib><description>The hot deformation behavior and microstructure evolution of a recently developed 2Cr12Ni4Mo3VNbN martensitic stainless steel are examined through hot compression tests conducted within the temperature range of 900–1200 °C and the strain rate range of 0.01–10 s−1. The constitutive equation and processing maps corresponding to hot deformation are established. The activation energy for hot deformation of 2Cr12Ni4Mo3VNbN steel is determined to be ≈457491.77 J mol−1. Simultaneously, the microstructure evolution during hot deformation is studied. Based on the processing maps and microstructure evolution analysis, it is concluded that the optimal windows for hot processing are within the temperature range of 1106–1150 °C and the strain rate range of 0.01–2.7 s−1, as well as at 1200 °C within the strain rate range of 1–2.7 s−1, exhibiting a power dissipation efficiency of 0.32. As the temperature increases and the strain rate decreases, the degree of dynamic recrystallization escalates.
2Cr12Ni4Mo3VNbN steel is a newly developed martensitic stainless steel used for last‐stage large blades of steam turbine. Herein, the hot deformation behavior and microstructure evolution of 2Cr12Ni4Mo3VNbN steel are investigated for the first time. Constitutive equations and hot‐processing maps of 2Cr12Ni4Mo3VNbN steel are established. Combined processing maps and microstructure evolution, the optimum windows of hot processing are obtained.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202300424</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2Cr12Ni4Mo3VNbN steels ; Compression tests ; constitutive equation ; Constitutive equations ; Constitutive relationships ; Deformation ; Dynamic recrystallization ; Energy dissipation ; Evolution ; hot deformation ; Hot pressing ; Martensitic stainless steels ; Microstructure ; Process mapping ; processing maps ; Steam turbines ; Strain rate</subject><ispartof>Steel research international, 2024-04, Vol.95 (4), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-3721f95b734049711b274d0549e925050eb801d356b42592f031176180b9bca63</cites><orcidid>0000-0001-8938-276X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202300424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202300424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xin, Rui‐shan</creatorcontrib><creatorcontrib>Zhou, Mao‐hua</creatorcontrib><creatorcontrib>Wang, Hao‐yu</creatorcontrib><creatorcontrib>Yu, Zhan‐yang</creatorcontrib><creatorcontrib>Wu, Zhi‐wei</creatorcontrib><creatorcontrib>Wang, Li‐wei</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><creatorcontrib>Kang, Ju</creatorcontrib><title>Hot Deformation Behavior and Microstructure Evolution of 2Cr12Ni4Mo3VNbN Steel Used for Last‐Stage Large Blades of Steam Turbine</title><title>Steel research international</title><description>The hot deformation behavior and microstructure evolution of a recently developed 2Cr12Ni4Mo3VNbN martensitic stainless steel are examined through hot compression tests conducted within the temperature range of 900–1200 °C and the strain rate range of 0.01–10 s−1. The constitutive equation and processing maps corresponding to hot deformation are established. The activation energy for hot deformation of 2Cr12Ni4Mo3VNbN steel is determined to be ≈457491.77 J mol−1. Simultaneously, the microstructure evolution during hot deformation is studied. Based on the processing maps and microstructure evolution analysis, it is concluded that the optimal windows for hot processing are within the temperature range of 1106–1150 °C and the strain rate range of 0.01–2.7 s−1, as well as at 1200 °C within the strain rate range of 1–2.7 s−1, exhibiting a power dissipation efficiency of 0.32. As the temperature increases and the strain rate decreases, the degree of dynamic recrystallization escalates.
2Cr12Ni4Mo3VNbN steel is a newly developed martensitic stainless steel used for last‐stage large blades of steam turbine. Herein, the hot deformation behavior and microstructure evolution of 2Cr12Ni4Mo3VNbN steel are investigated for the first time. Constitutive equations and hot‐processing maps of 2Cr12Ni4Mo3VNbN steel are established. Combined processing maps and microstructure evolution, the optimum windows of hot processing are obtained.</description><subject>2Cr12Ni4Mo3VNbN steels</subject><subject>Compression tests</subject><subject>constitutive equation</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Energy dissipation</subject><subject>Evolution</subject><subject>hot deformation</subject><subject>Hot pressing</subject><subject>Martensitic stainless steels</subject><subject>Microstructure</subject><subject>Process mapping</subject><subject>processing maps</subject><subject>Steam turbines</subject><subject>Strain rate</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwkAUhidGEwmydT2J6-KZSy-zFEQhgZoIGHfNlE61pHRwpsWwMz6Bz-iTOBWjS8_iXJLvPyfnR-icQJ8A0EtriqpPgTIATvkR6pAoEB7j_PHY9QEhHgsidop61q7BBYuiIOQd9D7WNb5WuTYbWRe6wgP1LHeFNlhWGZ4VK6NtbZpV3RiFRztdNt-UzjEdGkLjgs80e4jTGM9rpUq8tCrDbhueSlt_vn3Ma_mk3GBcHpQyU7bVOlZu8KIxaVGpM3SSy9Kq3k_touXNaDEce9O728nwauqtaEi5x0JKcuGnIePARUhISkOegc-FEtQHH1QaAcmYH6Sc-oLmwAgJAxJBKtKVDFgXXRz2bo1-aZStk7VuTOVOJgwYCOITP3JU_0C1n1uj8mRrio00-4RA0lqdtFYnv1Y7gTgIXotS7f-hk_n9JP7TfgF02oFr</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Xin, Rui‐shan</creator><creator>Zhou, Mao‐hua</creator><creator>Wang, Hao‐yu</creator><creator>Yu, Zhan‐yang</creator><creator>Wu, Zhi‐wei</creator><creator>Wang, Li‐wei</creator><creator>He, Yi</creator><creator>Kang, Ju</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8938-276X</orcidid></search><sort><creationdate>202404</creationdate><title>Hot Deformation Behavior and Microstructure Evolution of 2Cr12Ni4Mo3VNbN Steel Used for Last‐Stage Large Blades of Steam Turbine</title><author>Xin, Rui‐shan ; Zhou, Mao‐hua ; Wang, Hao‐yu ; Yu, Zhan‐yang ; Wu, Zhi‐wei ; Wang, Li‐wei ; He, Yi ; Kang, Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-3721f95b734049711b274d0549e925050eb801d356b42592f031176180b9bca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2Cr12Ni4Mo3VNbN steels</topic><topic>Compression tests</topic><topic>constitutive equation</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Energy dissipation</topic><topic>Evolution</topic><topic>hot deformation</topic><topic>Hot pressing</topic><topic>Martensitic stainless steels</topic><topic>Microstructure</topic><topic>Process mapping</topic><topic>processing maps</topic><topic>Steam turbines</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Rui‐shan</creatorcontrib><creatorcontrib>Zhou, Mao‐hua</creatorcontrib><creatorcontrib>Wang, Hao‐yu</creatorcontrib><creatorcontrib>Yu, Zhan‐yang</creatorcontrib><creatorcontrib>Wu, Zhi‐wei</creatorcontrib><creatorcontrib>Wang, Li‐wei</creatorcontrib><creatorcontrib>He, Yi</creatorcontrib><creatorcontrib>Kang, Ju</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Rui‐shan</au><au>Zhou, Mao‐hua</au><au>Wang, Hao‐yu</au><au>Yu, Zhan‐yang</au><au>Wu, Zhi‐wei</au><au>Wang, Li‐wei</au><au>He, Yi</au><au>Kang, Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot Deformation Behavior and Microstructure Evolution of 2Cr12Ni4Mo3VNbN Steel Used for Last‐Stage Large Blades of Steam Turbine</atitle><jtitle>Steel research international</jtitle><date>2024-04</date><risdate>2024</risdate><volume>95</volume><issue>4</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>The hot deformation behavior and microstructure evolution of a recently developed 2Cr12Ni4Mo3VNbN martensitic stainless steel are examined through hot compression tests conducted within the temperature range of 900–1200 °C and the strain rate range of 0.01–10 s−1. The constitutive equation and processing maps corresponding to hot deformation are established. The activation energy for hot deformation of 2Cr12Ni4Mo3VNbN steel is determined to be ≈457491.77 J mol−1. Simultaneously, the microstructure evolution during hot deformation is studied. Based on the processing maps and microstructure evolution analysis, it is concluded that the optimal windows for hot processing are within the temperature range of 1106–1150 °C and the strain rate range of 0.01–2.7 s−1, as well as at 1200 °C within the strain rate range of 1–2.7 s−1, exhibiting a power dissipation efficiency of 0.32. As the temperature increases and the strain rate decreases, the degree of dynamic recrystallization escalates.
2Cr12Ni4Mo3VNbN steel is a newly developed martensitic stainless steel used for last‐stage large blades of steam turbine. Herein, the hot deformation behavior and microstructure evolution of 2Cr12Ni4Mo3VNbN steel are investigated for the first time. Constitutive equations and hot‐processing maps of 2Cr12Ni4Mo3VNbN steel are established. Combined processing maps and microstructure evolution, the optimum windows of hot processing are obtained.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202300424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8938-276X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2024-04, Vol.95 (4), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_3030915158 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2Cr12Ni4Mo3VNbN steels Compression tests constitutive equation Constitutive equations Constitutive relationships Deformation Dynamic recrystallization Energy dissipation Evolution hot deformation Hot pressing Martensitic stainless steels Microstructure Process mapping processing maps Steam turbines Strain rate |
title | Hot Deformation Behavior and Microstructure Evolution of 2Cr12Ni4Mo3VNbN Steel Used for Last‐Stage Large Blades of Steam Turbine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20Deformation%20Behavior%20and%20Microstructure%20Evolution%20of%202Cr12Ni4Mo3VNbN%20Steel%20Used%20for%20Last%E2%80%90Stage%20Large%20Blades%20of%20Steam%20Turbine&rft.jtitle=Steel%20research%20international&rft.au=Xin,%20Rui%E2%80%90shan&rft.date=2024-04&rft.volume=95&rft.issue=4&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202300424&rft_dat=%3Cproquest_cross%3E3030915158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030915158&rft_id=info:pmid/&rfr_iscdi=true |