Modeling of the biosorption of Fe(III) ions by olive‐stone activated carbon

This study deals with the optimization of Fe(III) ion removal using activated carbon from olive stone waste using advanced machine learning models. The main objective is to evaluate and compare the performance of machine learning models, specifically multilayer perceptron artificial neural network (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied organometallic chemistry 2024-04, Vol.38 (4), p.n/a
Hauptverfasser: Massaoudi, Ayman, Echouchene, Fraj, Ayed, Mossaad Ben, Berguiga, Abdelwahed, Harchay, Ahlem, Belmabrouk, Hafedh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Applied organometallic chemistry
container_volume 38
creator Massaoudi, Ayman
Echouchene, Fraj
Ayed, Mossaad Ben
Berguiga, Abdelwahed
Harchay, Ahlem
Belmabrouk, Hafedh
description This study deals with the optimization of Fe(III) ion removal using activated carbon from olive stone waste using advanced machine learning models. The main objective is to evaluate and compare the performance of machine learning models, specifically multilayer perceptron artificial neural network (MLP‐ANN), general regression artificial neural network (GR‐ANN), radial basis function artificial neural network (RBF‐ANN), and particle swarm optimization artificial neural network (PSO‐ANN) in predicting Fe(III) removal efficiency. Experimental data on adsorption parameters were used to train and test the models. Techniques such as tuning hidden layer neurons, optimizing propagation values, and using a Taguchi approach PSO algorithm were applied to improve the models. For the MLP‐ANN model, the optimal configuration contains 13 neurons in the hidden layer. Concerning the parameters involved in the PSO‐ANN model, the coefficient C2 and the particle have the main effect on the reduction of the error. Their contributions are respectively 49% and 19%. The PSO‐ANN model showed superior performance with the highest regression coefficient (0.9997) and remarkable prediction accuracy, surpassing other models such as MLP‐ANN and GR‐ANN. This research suggests that innovative optimization techniques, particularly using PSO algorithms, significantly enhance the predictive capabilities of machine learning models in complex adsorption processes, contributing to more accurate Fe(III) removal models. The adsorption process depends on several parameters and experimental conditions. The effect of various parameters, namely, the initial concentration, time, stirring speed, temperature, and biosorbent dose on the removal efficiency of Fe(III) ions has been investigated in the present work. The objective of the present study is to develop machine learning models for the input and output parameters for modeling Fe(III) ions adsorption using activated carbon from olive‐stone waste. Several models have been investigated. The PSO‐ANN and GR‐ANN models are respectively the most accurate and the second most adequate ones.
doi_str_mv 10.1002/aoc.7384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030884034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030884034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-afe3ef97d34b65f07a5ffe0789dc0e540576df397a55ff5acadb876e2943a0dd3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqUgcQRLbMoiZRI7P15WFYVIrbqBteXEY3AV4mKnRdlxBM7ISUgpW1aj-b6nGekRch3DNAZI7pSrpzkr-AkZxSBEBDkTp2QESVZESQbpObkIYQMAIov5iKxWTmNj2xfqDO1ekVbWBee3nXXtIVrgpCzLWzqsgVY9dY3d4_fnV-hci1TVnd2rDjWtla9ce0nOjGoCXv3NMXle3D_NH6Pl-qGcz5ZRnQjGI2WQoRG5ZrzKUgO5So1ByAuha8CUQ5pn2jAx5EORqlrpqsgzTARnCrRmY3JzvLv17n2HoZMbt_Pt8FIyYFAUHBgfqMmRqr0LwaORW2_flO9lDPIgSw6y5EHWgEZH9MM22P_Lydl6_sv_AMX_a04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030884034</pqid></control><display><type>article</type><title>Modeling of the biosorption of Fe(III) ions by olive‐stone activated carbon</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Massaoudi, Ayman ; Echouchene, Fraj ; Ayed, Mossaad Ben ; Berguiga, Abdelwahed ; Harchay, Ahlem ; Belmabrouk, Hafedh</creator><creatorcontrib>Massaoudi, Ayman ; Echouchene, Fraj ; Ayed, Mossaad Ben ; Berguiga, Abdelwahed ; Harchay, Ahlem ; Belmabrouk, Hafedh</creatorcontrib><description>This study deals with the optimization of Fe(III) ion removal using activated carbon from olive stone waste using advanced machine learning models. The main objective is to evaluate and compare the performance of machine learning models, specifically multilayer perceptron artificial neural network (MLP‐ANN), general regression artificial neural network (GR‐ANN), radial basis function artificial neural network (RBF‐ANN), and particle swarm optimization artificial neural network (PSO‐ANN) in predicting Fe(III) removal efficiency. Experimental data on adsorption parameters were used to train and test the models. Techniques such as tuning hidden layer neurons, optimizing propagation values, and using a Taguchi approach PSO algorithm were applied to improve the models. For the MLP‐ANN model, the optimal configuration contains 13 neurons in the hidden layer. Concerning the parameters involved in the PSO‐ANN model, the coefficient C2 and the particle have the main effect on the reduction of the error. Their contributions are respectively 49% and 19%. The PSO‐ANN model showed superior performance with the highest regression coefficient (0.9997) and remarkable prediction accuracy, surpassing other models such as MLP‐ANN and GR‐ANN. This research suggests that innovative optimization techniques, particularly using PSO algorithms, significantly enhance the predictive capabilities of machine learning models in complex adsorption processes, contributing to more accurate Fe(III) removal models. The adsorption process depends on several parameters and experimental conditions. The effect of various parameters, namely, the initial concentration, time, stirring speed, temperature, and biosorbent dose on the removal efficiency of Fe(III) ions has been investigated in the present work. The objective of the present study is to develop machine learning models for the input and output parameters for modeling Fe(III) ions adsorption using activated carbon from olive‐stone waste. Several models have been investigated. The PSO‐ANN and GR‐ANN models are respectively the most accurate and the second most adequate ones.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.7384</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Adsorption ; Algorithms ; Artificial neural networks ; biosorption ; Fe(III) ions ; Machine learning ; Mathematical models ; Model accuracy ; Multilayer perceptrons ; Neural networks ; Neurons ; olive ; Optimization techniques ; Parameters ; Particle swarm optimization ; Radial basis function ; Regression coefficients ; Stone</subject><ispartof>Applied organometallic chemistry, 2024-04, Vol.38 (4), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-afe3ef97d34b65f07a5ffe0789dc0e540576df397a55ff5acadb876e2943a0dd3</citedby><cites>FETCH-LOGICAL-c2934-afe3ef97d34b65f07a5ffe0789dc0e540576df397a55ff5acadb876e2943a0dd3</cites><orcidid>0000-0003-0840-0271 ; 0000-0002-9091-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.7384$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.7384$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Massaoudi, Ayman</creatorcontrib><creatorcontrib>Echouchene, Fraj</creatorcontrib><creatorcontrib>Ayed, Mossaad Ben</creatorcontrib><creatorcontrib>Berguiga, Abdelwahed</creatorcontrib><creatorcontrib>Harchay, Ahlem</creatorcontrib><creatorcontrib>Belmabrouk, Hafedh</creatorcontrib><title>Modeling of the biosorption of Fe(III) ions by olive‐stone activated carbon</title><title>Applied organometallic chemistry</title><description>This study deals with the optimization of Fe(III) ion removal using activated carbon from olive stone waste using advanced machine learning models. The main objective is to evaluate and compare the performance of machine learning models, specifically multilayer perceptron artificial neural network (MLP‐ANN), general regression artificial neural network (GR‐ANN), radial basis function artificial neural network (RBF‐ANN), and particle swarm optimization artificial neural network (PSO‐ANN) in predicting Fe(III) removal efficiency. Experimental data on adsorption parameters were used to train and test the models. Techniques such as tuning hidden layer neurons, optimizing propagation values, and using a Taguchi approach PSO algorithm were applied to improve the models. For the MLP‐ANN model, the optimal configuration contains 13 neurons in the hidden layer. Concerning the parameters involved in the PSO‐ANN model, the coefficient C2 and the particle have the main effect on the reduction of the error. Their contributions are respectively 49% and 19%. The PSO‐ANN model showed superior performance with the highest regression coefficient (0.9997) and remarkable prediction accuracy, surpassing other models such as MLP‐ANN and GR‐ANN. This research suggests that innovative optimization techniques, particularly using PSO algorithms, significantly enhance the predictive capabilities of machine learning models in complex adsorption processes, contributing to more accurate Fe(III) removal models. The adsorption process depends on several parameters and experimental conditions. The effect of various parameters, namely, the initial concentration, time, stirring speed, temperature, and biosorbent dose on the removal efficiency of Fe(III) ions has been investigated in the present work. The objective of the present study is to develop machine learning models for the input and output parameters for modeling Fe(III) ions adsorption using activated carbon from olive‐stone waste. Several models have been investigated. The PSO‐ANN and GR‐ANN models are respectively the most accurate and the second most adequate ones.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>biosorption</subject><subject>Fe(III) ions</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>olive</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Radial basis function</subject><subject>Regression coefficients</subject><subject>Stone</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqUgcQRLbMoiZRI7P15WFYVIrbqBteXEY3AV4mKnRdlxBM7ISUgpW1aj-b6nGekRch3DNAZI7pSrpzkr-AkZxSBEBDkTp2QESVZESQbpObkIYQMAIov5iKxWTmNj2xfqDO1ekVbWBee3nXXtIVrgpCzLWzqsgVY9dY3d4_fnV-hci1TVnd2rDjWtla9ce0nOjGoCXv3NMXle3D_NH6Pl-qGcz5ZRnQjGI2WQoRG5ZrzKUgO5So1ByAuha8CUQ5pn2jAx5EORqlrpqsgzTARnCrRmY3JzvLv17n2HoZMbt_Pt8FIyYFAUHBgfqMmRqr0LwaORW2_flO9lDPIgSw6y5EHWgEZH9MM22P_Lydl6_sv_AMX_a04</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Massaoudi, Ayman</creator><creator>Echouchene, Fraj</creator><creator>Ayed, Mossaad Ben</creator><creator>Berguiga, Abdelwahed</creator><creator>Harchay, Ahlem</creator><creator>Belmabrouk, Hafedh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0840-0271</orcidid><orcidid>https://orcid.org/0000-0002-9091-5006</orcidid></search><sort><creationdate>202404</creationdate><title>Modeling of the biosorption of Fe(III) ions by olive‐stone activated carbon</title><author>Massaoudi, Ayman ; Echouchene, Fraj ; Ayed, Mossaad Ben ; Berguiga, Abdelwahed ; Harchay, Ahlem ; Belmabrouk, Hafedh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-afe3ef97d34b65f07a5ffe0789dc0e540576df397a55ff5acadb876e2943a0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>biosorption</topic><topic>Fe(III) ions</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>olive</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Radial basis function</topic><topic>Regression coefficients</topic><topic>Stone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massaoudi, Ayman</creatorcontrib><creatorcontrib>Echouchene, Fraj</creatorcontrib><creatorcontrib>Ayed, Mossaad Ben</creatorcontrib><creatorcontrib>Berguiga, Abdelwahed</creatorcontrib><creatorcontrib>Harchay, Ahlem</creatorcontrib><creatorcontrib>Belmabrouk, Hafedh</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massaoudi, Ayman</au><au>Echouchene, Fraj</au><au>Ayed, Mossaad Ben</au><au>Berguiga, Abdelwahed</au><au>Harchay, Ahlem</au><au>Belmabrouk, Hafedh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the biosorption of Fe(III) ions by olive‐stone activated carbon</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2024-04</date><risdate>2024</risdate><volume>38</volume><issue>4</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>This study deals with the optimization of Fe(III) ion removal using activated carbon from olive stone waste using advanced machine learning models. The main objective is to evaluate and compare the performance of machine learning models, specifically multilayer perceptron artificial neural network (MLP‐ANN), general regression artificial neural network (GR‐ANN), radial basis function artificial neural network (RBF‐ANN), and particle swarm optimization artificial neural network (PSO‐ANN) in predicting Fe(III) removal efficiency. Experimental data on adsorption parameters were used to train and test the models. Techniques such as tuning hidden layer neurons, optimizing propagation values, and using a Taguchi approach PSO algorithm were applied to improve the models. For the MLP‐ANN model, the optimal configuration contains 13 neurons in the hidden layer. Concerning the parameters involved in the PSO‐ANN model, the coefficient C2 and the particle have the main effect on the reduction of the error. Their contributions are respectively 49% and 19%. The PSO‐ANN model showed superior performance with the highest regression coefficient (0.9997) and remarkable prediction accuracy, surpassing other models such as MLP‐ANN and GR‐ANN. This research suggests that innovative optimization techniques, particularly using PSO algorithms, significantly enhance the predictive capabilities of machine learning models in complex adsorption processes, contributing to more accurate Fe(III) removal models. The adsorption process depends on several parameters and experimental conditions. The effect of various parameters, namely, the initial concentration, time, stirring speed, temperature, and biosorbent dose on the removal efficiency of Fe(III) ions has been investigated in the present work. The objective of the present study is to develop machine learning models for the input and output parameters for modeling Fe(III) ions adsorption using activated carbon from olive‐stone waste. Several models have been investigated. The PSO‐ANN and GR‐ANN models are respectively the most accurate and the second most adequate ones.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.7384</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0840-0271</orcidid><orcidid>https://orcid.org/0000-0002-9091-5006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2605
ispartof Applied organometallic chemistry, 2024-04, Vol.38 (4), p.n/a
issn 0268-2605
1099-0739
language eng
recordid cdi_proquest_journals_3030884034
source Wiley Online Library Journals Frontfile Complete
subjects Activated carbon
Adsorption
Algorithms
Artificial neural networks
biosorption
Fe(III) ions
Machine learning
Mathematical models
Model accuracy
Multilayer perceptrons
Neural networks
Neurons
olive
Optimization techniques
Parameters
Particle swarm optimization
Radial basis function
Regression coefficients
Stone
title Modeling of the biosorption of Fe(III) ions by olive‐stone activated carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20biosorption%20of%20Fe(III)%20ions%20by%20olive%E2%80%90stone%20activated%20carbon&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Massaoudi,%20Ayman&rft.date=2024-04&rft.volume=38&rft.issue=4&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.7384&rft_dat=%3Cproquest_cross%3E3030884034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030884034&rft_id=info:pmid/&rfr_iscdi=true