Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections

Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2024-05, Vol.102 (5), p.1899-1916
Hauptverfasser: Chen, Youqiang, Yang, Fan, Bai, Jianjun, Zou, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1916
container_issue 5
container_start_page 1899
container_title Canadian journal of chemical engineering
container_volume 102
creator Chen, Youqiang
Yang, Fan
Bai, Jianjun
Zou, Hongbo
description Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.
doi_str_mv 10.1002/cjce.25164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030883982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030883982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2604-2c07de566c7b673dd27e40e06151803befcda395617bb04f609d3814713f4e6c3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKWceOkxxR1PKjSlxA4mY59qZNlMbFTkG98Q68IU9CSjhzWo32mxlpCLlkMGMA8Y1pDM7ihElxRCYs53kELH89JhMAyCIBXJySsxCaQcYg2ISsF3rX9tRij6avXUd1Z6mt9apzoQ60cp6aNW5qo1u69c5gCBjoLtTditp9p4cPXbWu1O3351frRgwD-vcDMTiaMTeck5NKtwEv_u6UvCzmz8V9tHy6eyhul5GJJYgoNpBaTKQ0aSlTbm2cogAEyRKWAS-xMlbzPJEsLUsQlYTc8oyJlPFKoDR8Sq7G3KH7bYehV43b-W6oVBw4ZBnPs3igrkfKeBeCx0ptfb3Rfq8YqMOS6rCk-l1ygNkIf9Qt7v8hVfFYzEfPD50DeB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030883982</pqid></control><display><type>article</type><title>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Youqiang ; Yang, Fan ; Bai, Jianjun ; Zou, Hongbo</creator><creatorcontrib>Chen, Youqiang ; Yang, Fan ; Bai, Jianjun ; Zou, Hongbo</creatorcontrib><description>Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.25164</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Biological activity ; chemical processes ; Chemical reactions ; dynamic global–local preserving projections ; False alarms ; Fault detection ; Fault diagnosis ; PCA ; Principal components analysis ; Statistical methods</subject><ispartof>Canadian journal of chemical engineering, 2024-05, Vol.102 (5), p.1899-1916</ispartof><rights>2023 Canadian Society for Chemical Engineering.</rights><rights>2024 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2604-2c07de566c7b673dd27e40e06151803befcda395617bb04f609d3814713f4e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.25164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.25164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Chen, Youqiang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Bai, Jianjun</creatorcontrib><creatorcontrib>Zou, Hongbo</creatorcontrib><title>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</title><title>Canadian journal of chemical engineering</title><description>Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.</description><subject>Algorithms</subject><subject>Biological activity</subject><subject>chemical processes</subject><subject>Chemical reactions</subject><subject>dynamic global–local preserving projections</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>PCA</subject><subject>Principal components analysis</subject><subject>Statistical methods</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKWceOkxxR1PKjSlxA4mY59qZNlMbFTkG98Q68IU9CSjhzWo32mxlpCLlkMGMA8Y1pDM7ihElxRCYs53kELH89JhMAyCIBXJySsxCaQcYg2ISsF3rX9tRij6avXUd1Z6mt9apzoQ60cp6aNW5qo1u69c5gCBjoLtTditp9p4cPXbWu1O3351frRgwD-vcDMTiaMTeck5NKtwEv_u6UvCzmz8V9tHy6eyhul5GJJYgoNpBaTKQ0aSlTbm2cogAEyRKWAS-xMlbzPJEsLUsQlYTc8oyJlPFKoDR8Sq7G3KH7bYehV43b-W6oVBw4ZBnPs3igrkfKeBeCx0ptfb3Rfq8YqMOS6rCk-l1ygNkIf9Qt7v8hVfFYzEfPD50DeB8</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Chen, Youqiang</creator><creator>Yang, Fan</creator><creator>Bai, Jianjun</creator><creator>Zou, Hongbo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202405</creationdate><title>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</title><author>Chen, Youqiang ; Yang, Fan ; Bai, Jianjun ; Zou, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2604-2c07de566c7b673dd27e40e06151803befcda395617bb04f609d3814713f4e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biological activity</topic><topic>chemical processes</topic><topic>Chemical reactions</topic><topic>dynamic global–local preserving projections</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>PCA</topic><topic>Principal components analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Youqiang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Bai, Jianjun</creatorcontrib><creatorcontrib>Zou, Hongbo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Youqiang</au><au>Yang, Fan</au><au>Bai, Jianjun</au><au>Zou, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2024-05</date><risdate>2024</risdate><volume>102</volume><issue>5</issue><spage>1899</spage><epage>1916</epage><pages>1899-1916</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.25164</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2024-05, Vol.102 (5), p.1899-1916
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_3030883982
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Biological activity
chemical processes
Chemical reactions
dynamic global–local preserving projections
False alarms
Fault detection
Fault diagnosis
PCA
Principal components analysis
Statistical methods
title Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20detection%20and%20diagnosis%20for%20chemical%20processes%20using%20dynamic%20global%E2%80%93local%20preserving%20projections&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Chen,%20Youqiang&rft.date=2024-05&rft.volume=102&rft.issue=5&rft.spage=1899&rft.epage=1916&rft.pages=1899-1916&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.25164&rft_dat=%3Cproquest_cross%3E3030883982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030883982&rft_id=info:pmid/&rfr_iscdi=true