Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections
Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous m...
Gespeichert in:
Veröffentlicht in: | Canadian journal of chemical engineering 2024-05, Vol.102 (5), p.1899-1916 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1916 |
---|---|
container_issue | 5 |
container_start_page | 1899 |
container_title | Canadian journal of chemical engineering |
container_volume | 102 |
creator | Chen, Youqiang Yang, Fan Bai, Jianjun Zou, Hongbo |
description | Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved. |
doi_str_mv | 10.1002/cjce.25164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030883982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030883982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2604-2c07de566c7b673dd27e40e06151803befcda395617bb04f609d3814713f4e6c3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKWceOkxxR1PKjSlxA4mY59qZNlMbFTkG98Q68IU9CSjhzWo32mxlpCLlkMGMA8Y1pDM7ihElxRCYs53kELH89JhMAyCIBXJySsxCaQcYg2ISsF3rX9tRij6avXUd1Z6mt9apzoQ60cp6aNW5qo1u69c5gCBjoLtTditp9p4cPXbWu1O3351frRgwD-vcDMTiaMTeck5NKtwEv_u6UvCzmz8V9tHy6eyhul5GJJYgoNpBaTKQ0aSlTbm2cogAEyRKWAS-xMlbzPJEsLUsQlYTc8oyJlPFKoDR8Sq7G3KH7bYehV43b-W6oVBw4ZBnPs3igrkfKeBeCx0ptfb3Rfq8YqMOS6rCk-l1ygNkIf9Qt7v8hVfFYzEfPD50DeB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030883982</pqid></control><display><type>article</type><title>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Youqiang ; Yang, Fan ; Bai, Jianjun ; Zou, Hongbo</creator><creatorcontrib>Chen, Youqiang ; Yang, Fan ; Bai, Jianjun ; Zou, Hongbo</creatorcontrib><description>Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.25164</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Biological activity ; chemical processes ; Chemical reactions ; dynamic global–local preserving projections ; False alarms ; Fault detection ; Fault diagnosis ; PCA ; Principal components analysis ; Statistical methods</subject><ispartof>Canadian journal of chemical engineering, 2024-05, Vol.102 (5), p.1899-1916</ispartof><rights>2023 Canadian Society for Chemical Engineering.</rights><rights>2024 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2604-2c07de566c7b673dd27e40e06151803befcda395617bb04f609d3814713f4e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.25164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.25164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Chen, Youqiang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Bai, Jianjun</creatorcontrib><creatorcontrib>Zou, Hongbo</creatorcontrib><title>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</title><title>Canadian journal of chemical engineering</title><description>Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.</description><subject>Algorithms</subject><subject>Biological activity</subject><subject>chemical processes</subject><subject>Chemical reactions</subject><subject>dynamic global–local preserving projections</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>PCA</subject><subject>Principal components analysis</subject><subject>Statistical methods</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKWceOkxxR1PKjSlxA4mY59qZNlMbFTkG98Q68IU9CSjhzWo32mxlpCLlkMGMA8Y1pDM7ihElxRCYs53kELH89JhMAyCIBXJySsxCaQcYg2ISsF3rX9tRij6avXUd1Z6mt9apzoQ60cp6aNW5qo1u69c5gCBjoLtTditp9p4cPXbWu1O3351frRgwD-vcDMTiaMTeck5NKtwEv_u6UvCzmz8V9tHy6eyhul5GJJYgoNpBaTKQ0aSlTbm2cogAEyRKWAS-xMlbzPJEsLUsQlYTc8oyJlPFKoDR8Sq7G3KH7bYehV43b-W6oVBw4ZBnPs3igrkfKeBeCx0ptfb3Rfq8YqMOS6rCk-l1ygNkIf9Qt7v8hVfFYzEfPD50DeB8</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Chen, Youqiang</creator><creator>Yang, Fan</creator><creator>Bai, Jianjun</creator><creator>Zou, Hongbo</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202405</creationdate><title>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</title><author>Chen, Youqiang ; Yang, Fan ; Bai, Jianjun ; Zou, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2604-2c07de566c7b673dd27e40e06151803befcda395617bb04f609d3814713f4e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biological activity</topic><topic>chemical processes</topic><topic>Chemical reactions</topic><topic>dynamic global–local preserving projections</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>PCA</topic><topic>Principal components analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Youqiang</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Bai, Jianjun</creatorcontrib><creatorcontrib>Zou, Hongbo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Youqiang</au><au>Yang, Fan</au><au>Bai, Jianjun</au><au>Zou, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2024-05</date><risdate>2024</risdate><volume>102</volume><issue>5</issue><spage>1899</spage><epage>1916</epage><pages>1899-1916</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Most traditional multivariate statistical monitoring methods require an assumption that the observation values at a certain moment and a past moment are statistically independent. However, in actual chemical and biological processes, the sample at a certain moment is often affected by the previous moment. Therefore, given the problem of more false alarms and poor detection ability based on the traditional principal component analysis, this article proposes a dynamic global–local preserving projections (DGLPP) algorithm. Unlike dynamic local preserving projections (DLPP) and dynamic principal component analysis (DPCA), DGLPP controls the global and local information retained in the dimensionality reduction data by introducing weight coefficients, which makes the algorithm applicable to more types of industrial processes. Moreover, new parameter determination methods are also proposed for improved detection and diagnosis. Through the improved contribution graph method, we can see the influence degree of each variable on the fault, to monitor and isolate the fault. Finally, by verifying the operation of the multivariable process and two practical cases, the results show that compared with DPCA, DLPP, and global local retained projection (GLPP) methods, the performance under this method has been significantly improved.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cjce.25164</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4034 |
ispartof | Canadian journal of chemical engineering, 2024-05, Vol.102 (5), p.1899-1916 |
issn | 0008-4034 1939-019X |
language | eng |
recordid | cdi_proquest_journals_3030883982 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Biological activity chemical processes Chemical reactions dynamic global–local preserving projections False alarms Fault detection Fault diagnosis PCA Principal components analysis Statistical methods |
title | Fault detection and diagnosis for chemical processes using dynamic global–local preserving projections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20detection%20and%20diagnosis%20for%20chemical%20processes%20using%20dynamic%20global%E2%80%93local%20preserving%20projections&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Chen,%20Youqiang&rft.date=2024-05&rft.volume=102&rft.issue=5&rft.spage=1899&rft.epage=1916&rft.pages=1899-1916&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.25164&rft_dat=%3Cproquest_cross%3E3030883982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030883982&rft_id=info:pmid/&rfr_iscdi=true |