Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process
As a sustainable, environmentally friendly, and economically viable way to produce 1,3-butadiene, the ethanol-to-butadiene (ETB) process has received increasing attention recently. This ETB process normally requires catalysts with suitable acidity and basicity, namely an acid–base balance. However,...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2024-04, Vol.14 (7), p.1822-1836 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1836 |
---|---|
container_issue | 7 |
container_start_page | 1822 |
container_title | Catalysis science & technology |
container_volume | 14 |
creator | Wang, Peng Hou, Shaowen Tu, Pengxiang Xue, Bing Guan, Weixin Wang, Dong Zhou, Danfeng He, Yajun Chen, Xinhui Wang, Yixing Fang, Kegong Li, Xiaonian Ni, Jun |
description | As a sustainable, environmentally friendly, and economically viable way to produce 1,3-butadiene, the ethanol-to-butadiene (ETB) process has received increasing attention recently. This ETB process normally requires catalysts with suitable acidity and basicity, namely an acid–base balance. However, the origin of acid–base balance has not yet been elucidated. Herein, we demonstrate that by finely coordinating the interaction of ZnO and ZrO2, a butadiene productivity of 0.33 gBD gcat−1 h−1 at low WHSV and 1.39 gBD gcat−1 h−1 at high WHSV can be achieved. In contrast, pure ZnO prefers ethanol dehydrogenation to acetaldehyde and pure ZrO2 favors ethanol dehydration to ethylene and diethyl ether. Through a variety of characterization techniques, we found that the interaction of ZnO and ZrO2 alters the acidity and basicity of catalysts, resulting in volcanic shapes of ethanol conversion, butadiene selectivity, and butadiene yield in the ETB process. These findings provide in-depth insights into the understanding of the ETB process and may also apply to other reaction systems using ZnO–ZrO2 as catalytically active components. |
doi_str_mv | 10.1039/d3cy01242e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3030758037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030758037</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-492717cb87410b5c250690b40507d210030aeb6145208bd9851d5f91ac5cbc4d3</originalsourceid><addsrcrecordid>eNo9TUtLAzEYDKJgqb34CwKeo19em-xRii8o7EUveyl5rU0pSU2yB_-9C4pzmQfMDEK3FO4p8P7Bc_cNlAkWLtCKgRBEqI5e_mvJr9Gm1iMsED0FzVZo3OZcfEymxfSJ2yHgmFooxrWYE84THtOATfJ4LAPDUy6LwWGaooshNRzawaR8Ii0TOzfjlzDgc8ku1HqDriZzqmHzx2v08fz0vn0lu-Hlbfu4I2eqeSOiZ4oqZ7USFKx0TELXgxUgQXlGATiYYDsqJANtfa8l9XLqqXHSWSc8X6O7393l92sOte2PeS5pudzzpaykBq74D64YU1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030758037</pqid></control><display><type>article</type><title>Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process</title><source>Royal Society Of Chemistry Journals</source><creator>Wang, Peng ; Hou, Shaowen ; Tu, Pengxiang ; Xue, Bing ; Guan, Weixin ; Wang, Dong ; Zhou, Danfeng ; He, Yajun ; Chen, Xinhui ; Wang, Yixing ; Fang, Kegong ; Li, Xiaonian ; Ni, Jun</creator><creatorcontrib>Wang, Peng ; Hou, Shaowen ; Tu, Pengxiang ; Xue, Bing ; Guan, Weixin ; Wang, Dong ; Zhou, Danfeng ; He, Yajun ; Chen, Xinhui ; Wang, Yixing ; Fang, Kegong ; Li, Xiaonian ; Ni, Jun</creatorcontrib><description>As a sustainable, environmentally friendly, and economically viable way to produce 1,3-butadiene, the ethanol-to-butadiene (ETB) process has received increasing attention recently. This ETB process normally requires catalysts with suitable acidity and basicity, namely an acid–base balance. However, the origin of acid–base balance has not yet been elucidated. Herein, we demonstrate that by finely coordinating the interaction of ZnO and ZrO2, a butadiene productivity of 0.33 gBD gcat−1 h−1 at low WHSV and 1.39 gBD gcat−1 h−1 at high WHSV can be achieved. In contrast, pure ZnO prefers ethanol dehydrogenation to acetaldehyde and pure ZrO2 favors ethanol dehydration to ethylene and diethyl ether. Through a variety of characterization techniques, we found that the interaction of ZnO and ZrO2 alters the acidity and basicity of catalysts, resulting in volcanic shapes of ethanol conversion, butadiene selectivity, and butadiene yield in the ETB process. These findings provide in-depth insights into the understanding of the ETB process and may also apply to other reaction systems using ZnO–ZrO2 as catalytically active components.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy01242e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acetaldehyde ; Basicity ; Butadiene ; Catalysts ; Dehydration ; Dehydrogenation ; Diethyl ether ; Ethanol ; Zinc oxide ; Zirconium dioxide</subject><ispartof>Catalysis science & technology, 2024-04, Vol.14 (7), p.1822-1836</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Hou, Shaowen</creatorcontrib><creatorcontrib>Tu, Pengxiang</creatorcontrib><creatorcontrib>Xue, Bing</creatorcontrib><creatorcontrib>Guan, Weixin</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhou, Danfeng</creatorcontrib><creatorcontrib>He, Yajun</creatorcontrib><creatorcontrib>Chen, Xinhui</creatorcontrib><creatorcontrib>Wang, Yixing</creatorcontrib><creatorcontrib>Fang, Kegong</creatorcontrib><creatorcontrib>Li, Xiaonian</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><title>Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process</title><title>Catalysis science & technology</title><description>As a sustainable, environmentally friendly, and economically viable way to produce 1,3-butadiene, the ethanol-to-butadiene (ETB) process has received increasing attention recently. This ETB process normally requires catalysts with suitable acidity and basicity, namely an acid–base balance. However, the origin of acid–base balance has not yet been elucidated. Herein, we demonstrate that by finely coordinating the interaction of ZnO and ZrO2, a butadiene productivity of 0.33 gBD gcat−1 h−1 at low WHSV and 1.39 gBD gcat−1 h−1 at high WHSV can be achieved. In contrast, pure ZnO prefers ethanol dehydrogenation to acetaldehyde and pure ZrO2 favors ethanol dehydration to ethylene and diethyl ether. Through a variety of characterization techniques, we found that the interaction of ZnO and ZrO2 alters the acidity and basicity of catalysts, resulting in volcanic shapes of ethanol conversion, butadiene selectivity, and butadiene yield in the ETB process. These findings provide in-depth insights into the understanding of the ETB process and may also apply to other reaction systems using ZnO–ZrO2 as catalytically active components.</description><subject>Acetaldehyde</subject><subject>Basicity</subject><subject>Butadiene</subject><subject>Catalysts</subject><subject>Dehydration</subject><subject>Dehydrogenation</subject><subject>Diethyl ether</subject><subject>Ethanol</subject><subject>Zinc oxide</subject><subject>Zirconium dioxide</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9TUtLAzEYDKJgqb34CwKeo19em-xRii8o7EUveyl5rU0pSU2yB_-9C4pzmQfMDEK3FO4p8P7Bc_cNlAkWLtCKgRBEqI5e_mvJr9Gm1iMsED0FzVZo3OZcfEymxfSJ2yHgmFooxrWYE84THtOATfJ4LAPDUy6LwWGaooshNRzawaR8Ii0TOzfjlzDgc8ku1HqDriZzqmHzx2v08fz0vn0lu-Hlbfu4I2eqeSOiZ4oqZ7USFKx0TELXgxUgQXlGATiYYDsqJANtfa8l9XLqqXHSWSc8X6O7393l92sOte2PeS5pudzzpaykBq74D64YU1o</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Wang, Peng</creator><creator>Hou, Shaowen</creator><creator>Tu, Pengxiang</creator><creator>Xue, Bing</creator><creator>Guan, Weixin</creator><creator>Wang, Dong</creator><creator>Zhou, Danfeng</creator><creator>He, Yajun</creator><creator>Chen, Xinhui</creator><creator>Wang, Yixing</creator><creator>Fang, Kegong</creator><creator>Li, Xiaonian</creator><creator>Ni, Jun</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20240402</creationdate><title>Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process</title><author>Wang, Peng ; Hou, Shaowen ; Tu, Pengxiang ; Xue, Bing ; Guan, Weixin ; Wang, Dong ; Zhou, Danfeng ; He, Yajun ; Chen, Xinhui ; Wang, Yixing ; Fang, Kegong ; Li, Xiaonian ; Ni, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-492717cb87410b5c250690b40507d210030aeb6145208bd9851d5f91ac5cbc4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetaldehyde</topic><topic>Basicity</topic><topic>Butadiene</topic><topic>Catalysts</topic><topic>Dehydration</topic><topic>Dehydrogenation</topic><topic>Diethyl ether</topic><topic>Ethanol</topic><topic>Zinc oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Hou, Shaowen</creatorcontrib><creatorcontrib>Tu, Pengxiang</creatorcontrib><creatorcontrib>Xue, Bing</creatorcontrib><creatorcontrib>Guan, Weixin</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Zhou, Danfeng</creatorcontrib><creatorcontrib>He, Yajun</creatorcontrib><creatorcontrib>Chen, Xinhui</creatorcontrib><creatorcontrib>Wang, Yixing</creatorcontrib><creatorcontrib>Fang, Kegong</creatorcontrib><creatorcontrib>Li, Xiaonian</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Hou, Shaowen</au><au>Tu, Pengxiang</au><au>Xue, Bing</au><au>Guan, Weixin</au><au>Wang, Dong</au><au>Zhou, Danfeng</au><au>He, Yajun</au><au>Chen, Xinhui</au><au>Wang, Yixing</au><au>Fang, Kegong</au><au>Li, Xiaonian</au><au>Ni, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process</atitle><jtitle>Catalysis science & technology</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>1822</spage><epage>1836</epage><pages>1822-1836</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>As a sustainable, environmentally friendly, and economically viable way to produce 1,3-butadiene, the ethanol-to-butadiene (ETB) process has received increasing attention recently. This ETB process normally requires catalysts with suitable acidity and basicity, namely an acid–base balance. However, the origin of acid–base balance has not yet been elucidated. Herein, we demonstrate that by finely coordinating the interaction of ZnO and ZrO2, a butadiene productivity of 0.33 gBD gcat−1 h−1 at low WHSV and 1.39 gBD gcat−1 h−1 at high WHSV can be achieved. In contrast, pure ZnO prefers ethanol dehydrogenation to acetaldehyde and pure ZrO2 favors ethanol dehydration to ethylene and diethyl ether. Through a variety of characterization techniques, we found that the interaction of ZnO and ZrO2 alters the acidity and basicity of catalysts, resulting in volcanic shapes of ethanol conversion, butadiene selectivity, and butadiene yield in the ETB process. These findings provide in-depth insights into the understanding of the ETB process and may also apply to other reaction systems using ZnO–ZrO2 as catalytically active components.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cy01242e</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2024-04, Vol.14 (7), p.1822-1836 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_proquest_journals_3030758037 |
source | Royal Society Of Chemistry Journals |
subjects | Acetaldehyde Basicity Butadiene Catalysts Dehydration Dehydrogenation Diethyl ether Ethanol Zinc oxide Zirconium dioxide |
title | Coordinating the interaction of ZnO and ZrO2 for an efficient ethanol-to-butadiene process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinating%20the%20interaction%20of%20ZnO%20and%20ZrO2%20for%20an%20efficient%20ethanol-to-butadiene%20process&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Wang,%20Peng&rft.date=2024-04-02&rft.volume=14&rft.issue=7&rft.spage=1822&rft.epage=1836&rft.pages=1822-1836&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy01242e&rft_dat=%3Cproquest%3E3030758037%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030758037&rft_id=info:pmid/&rfr_iscdi=true |