Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation

A tenth-order accurate method for the numerical solution of the time-dependent Schrödinger equation is presented. The method is based on the approximation of the evolution operator by a product formula. A decrease in the number of operator exponentials in the resulting formula due to the optimizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2024-02, Vol.64 (2), p.248-265
1. Verfasser: Zakharov, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 248
container_title Computational mathematics and mathematical physics
container_volume 64
creator Zakharov, M. A.
description A tenth-order accurate method for the numerical solution of the time-dependent Schrödinger equation is presented. The method is based on the approximation of the evolution operator by a product formula. A decrease in the number of operator exponentials in the resulting formula due to the optimization of their sequence is discussed. Based on the idea proposed by Yoshida, two tenth-order accurate algorithms for approximating the evolution operator are constructed. Numerical tests demonstrate the stability and the order of accuracy of these algorithms. The method used in the paper considerably reduces the number of exponential multipliers in the scheme as compared with the well-known Lie–Trotter–Suzuki formula.
doi_str_mv 10.1134/S0965542524020131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030715255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030715255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8fc03c6c164b0e5579df6b2ed5750b0d91285f79078d1b5e798a5233cd4fe4003</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscQ6s7ayTHKtSfqRCDy0XLlFib0iqNmkdB4kX4wV4MRIViQPitIeZb0Y7jF0KuBZChTdLSDRiKFGGIEEoccRGAhEDrbU8ZqNBDgb9lJ217RpA6CRWI_a6otqXwcJZcnxiTOcyT_y525KrTLbhT-TLxvKicXzZbN6r-o37kviq2lJwSzuqbc_zpSnd16ft1T5ltu8yXzX1OTspsk1LFz93zF7uZqvpQzBf3D9OJ_PASB37IC4MKKON0GEOhBglttC5JIsRQg42ETLGIkogiq3IkaIkzlAqZWxYUAigxuzqkLtzzb6j1qfrpnN1X5kqUBAJlIi9SxxcxjVt66hId67aZu4jFZAOE6Z_JuwZeWDa3jv89pv8P_QNBrRysQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030715255</pqid></control><display><type>article</type><title>Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Zakharov, M. A.</creator><creatorcontrib>Zakharov, M. A.</creatorcontrib><description>A tenth-order accurate method for the numerical solution of the time-dependent Schrödinger equation is presented. The method is based on the approximation of the evolution operator by a product formula. A decrease in the number of operator exponentials in the resulting formula due to the optimization of their sequence is discussed. Based on the idea proposed by Yoshida, two tenth-order accurate algorithms for approximating the evolution operator are constructed. Numerical tests demonstrate the stability and the order of accuracy of these algorithms. The method used in the paper considerably reduces the number of exponential multipliers in the scheme as compared with the well-known Lie–Trotter–Suzuki formula.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542524020131</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Evolution ; Formulas (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Numerical methods ; Optimization ; Partial Differential Equations ; Schrodinger equation ; Time dependence</subject><ispartof>Computational mathematics and mathematical physics, 2024-02, Vol.64 (2), p.248-265</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2024, Vol. 64, No. 2, pp. 248–265. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8fc03c6c164b0e5579df6b2ed5750b0d91285f79078d1b5e798a5233cd4fe4003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542524020131$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542524020131$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zakharov, M. A.</creatorcontrib><title>Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A tenth-order accurate method for the numerical solution of the time-dependent Schrödinger equation is presented. The method is based on the approximation of the evolution operator by a product formula. A decrease in the number of operator exponentials in the resulting formula due to the optimization of their sequence is discussed. Based on the idea proposed by Yoshida, two tenth-order accurate algorithms for approximating the evolution operator are constructed. Numerical tests demonstrate the stability and the order of accuracy of these algorithms. The method used in the paper considerably reduces the number of exponential multipliers in the scheme as compared with the well-known Lie–Trotter–Suzuki formula.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Evolution</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Partial Differential Equations</subject><subject>Schrodinger equation</subject><subject>Time dependence</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscQ6s7ayTHKtSfqRCDy0XLlFib0iqNmkdB4kX4wV4MRIViQPitIeZb0Y7jF0KuBZChTdLSDRiKFGGIEEoccRGAhEDrbU8ZqNBDgb9lJ217RpA6CRWI_a6otqXwcJZcnxiTOcyT_y525KrTLbhT-TLxvKicXzZbN6r-o37kviq2lJwSzuqbc_zpSnd16ft1T5ltu8yXzX1OTspsk1LFz93zF7uZqvpQzBf3D9OJ_PASB37IC4MKKON0GEOhBglttC5JIsRQg42ETLGIkogiq3IkaIkzlAqZWxYUAigxuzqkLtzzb6j1qfrpnN1X5kqUBAJlIi9SxxcxjVt66hId67aZu4jFZAOE6Z_JuwZeWDa3jv89pv8P_QNBrRysQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zakharov, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240201</creationdate><title>Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation</title><author>Zakharov, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8fc03c6c164b0e5579df6b2ed5750b0d91285f79078d1b5e798a5233cd4fe4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Evolution</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Partial Differential Equations</topic><topic>Schrodinger equation</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakharov, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakharov, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>64</volume><issue>2</issue><spage>248</spage><epage>265</epage><pages>248-265</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A tenth-order accurate method for the numerical solution of the time-dependent Schrödinger equation is presented. The method is based on the approximation of the evolution operator by a product formula. A decrease in the number of operator exponentials in the resulting formula due to the optimization of their sequence is discussed. Based on the idea proposed by Yoshida, two tenth-order accurate algorithms for approximating the evolution operator are constructed. Numerical tests demonstrate the stability and the order of accuracy of these algorithms. The method used in the paper considerably reduces the number of exponential multipliers in the scheme as compared with the well-known Lie–Trotter–Suzuki formula.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542524020131</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2024-02, Vol.64 (2), p.248-265
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_3030715255
source Springer Nature - Complete Springer Journals
subjects Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Evolution
Formulas (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical analysis
Numerical methods
Optimization
Partial Differential Equations
Schrodinger equation
Time dependence
title Tenth-Order Accurate Numerical Method for Solving the Time-Dependent Schrödinger Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tenth-Order%20Accurate%20Numerical%20Method%20for%20Solving%20the%20Time-Dependent%20Schr%C3%B6dinger%20Equation&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Zakharov,%20M.%20A.&rft.date=2024-02-01&rft.volume=64&rft.issue=2&rft.spage=248&rft.epage=265&rft.pages=248-265&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542524020131&rft_dat=%3Cproquest_cross%3E3030715255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030715255&rft_id=info:pmid/&rfr_iscdi=true