p-Si/n-CrSe2 Heterojunctions Designed as High-Frequency Capacitors and Photosensors

In this work, polycrystalline n -CrSe 2 nanosheets with thickness of 100 nm are grown on p -type Si wafers by the thermal deposition technique under vacuum pressure of 10 −5 mbar. Structural and optical investigations showed the preferred growth of the trigonal phase of CrSe 2 on Si substrates. Dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2024-05, Vol.53 (5), p.2591-2600
Hauptverfasser: Algarni, Sabah E., Qasrawi, A. F., Khusayfan, Najla M., Alharbi, Seham R., Alfhaid, Latifah Hamad Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2600
container_issue 5
container_start_page 2591
container_title Journal of electronic materials
container_volume 53
creator Algarni, Sabah E.
Qasrawi, A. F.
Khusayfan, Najla M.
Alharbi, Seham R.
Alfhaid, Latifah Hamad Khalid
description In this work, polycrystalline n -CrSe 2 nanosheets with thickness of 100 nm are grown on p -type Si wafers by the thermal deposition technique under vacuum pressure of 10 −5 mbar. Structural and optical investigations showed the preferred growth of the trigonal phase of CrSe 2 on Si substrates. Direct allowed transitions within an energy band gap of 2.60 eV were found to be dominant in the films. Silver contacts on the layers allowed construction of hybrid optoelectronic device structure formed from Ag/p-Si Schottky arm and p -Si/ n -CrSe 2 pn junction. The device runs in such a way that forward biasing of the Schottky arm is accompanied by a reverse biasing of the pn junction. It is observed that the hybrid device structure can perform as a high-frequency capacitor. The capacitance–voltage characteristic curves show that these capacitors can respond to ac signals with frequencies of 100 MHz. They also exhibit bandstop filter characteristics allowing the passing of signals with return loss and voltage standing wave ratios exceeding 10 dB and 1.76, respectively, at 60 MHz. The device under study displayed rectifying and photo-sensing properties with an asymmetry ratio of 60 in the dark and 217 under excitation of visible light. Visible light excitation of these photosensors displayed voltage biasing dependence in their current responsivity, external quantum efficiency and specific detectivity, reaching values of 0.24 A/W, 65.2% and 4.83 × 10 9 Jones, respectively. The features of the hybrid devices which use CrSe 2 nanosheets as active media make them good candidates for use in radio wave and visible light communication technologies.
doi_str_mv 10.1007/s11664-024-11004-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3028034167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3028034167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-2eded01727cdb3576b3200b351ae018c18c14a0a3195d70539000f7c50c874e33</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Ap4Dn2PeSzWZ7lNVaoaBQBW8hzabtFk3WZHvo35u6gjfhwRuGmXmPIeQa4RYB1CQhlmXBgBcMM5HRCRmhLATDqnw_JSMQJTLJhTwnFyntAFBihSOy7NiynXhWx6XjdO56F8Nu723fBp_ovUvtxruGmkTn7WbLZtF97Z23B1qbzti2DzFR4xv6sg19SM6nTFySs7X5SO7qd4_J2-zhtZ6zxfPjU323YFZg0TPuGtcAKq5ssxJSlSvBATJC4wAre5zCgBE4lY0CKaYAsFZWgq1U4YQYk5sht4shf5V6vQv76PNJLYBXIAosVVbxQWVjSCm6te5i-2niQSPoY3l6KE_n8vRPeRqySQymlMV-4-Jf9D-ub1R2cHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3028034167</pqid></control><display><type>article</type><title>p-Si/n-CrSe2 Heterojunctions Designed as High-Frequency Capacitors and Photosensors</title><source>SpringerNature Complete Journals</source><creator>Algarni, Sabah E. ; Qasrawi, A. F. ; Khusayfan, Najla M. ; Alharbi, Seham R. ; Alfhaid, Latifah Hamad Khalid</creator><creatorcontrib>Algarni, Sabah E. ; Qasrawi, A. F. ; Khusayfan, Najla M. ; Alharbi, Seham R. ; Alfhaid, Latifah Hamad Khalid</creatorcontrib><description>In this work, polycrystalline n -CrSe 2 nanosheets with thickness of 100 nm are grown on p -type Si wafers by the thermal deposition technique under vacuum pressure of 10 −5 mbar. Structural and optical investigations showed the preferred growth of the trigonal phase of CrSe 2 on Si substrates. Direct allowed transitions within an energy band gap of 2.60 eV were found to be dominant in the films. Silver contacts on the layers allowed construction of hybrid optoelectronic device structure formed from Ag/p-Si Schottky arm and p -Si/ n -CrSe 2 pn junction. The device runs in such a way that forward biasing of the Schottky arm is accompanied by a reverse biasing of the pn junction. It is observed that the hybrid device structure can perform as a high-frequency capacitor. The capacitance–voltage characteristic curves show that these capacitors can respond to ac signals with frequencies of 100 MHz. They also exhibit bandstop filter characteristics allowing the passing of signals with return loss and voltage standing wave ratios exceeding 10 dB and 1.76, respectively, at 60 MHz. The device under study displayed rectifying and photo-sensing properties with an asymmetry ratio of 60 in the dark and 217 under excitation of visible light. Visible light excitation of these photosensors displayed voltage biasing dependence in their current responsivity, external quantum efficiency and specific detectivity, reaching values of 0.24 A/W, 65.2% and 4.83 × 10 9 Jones, respectively. The features of the hybrid devices which use CrSe 2 nanosheets as active media make them good candidates for use in radio wave and visible light communication technologies.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11004-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bandstop filters ; Capacitance-voltage characteristics ; Capacitors ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Communication ; Design ; Dielectric properties ; Electrodes ; Electronics and Microelectronics ; Energy bands ; Energy gap ; Excitation ; Glass substrates ; Heterojunctions ; Instrumentation ; Light ; Materials Science ; Nanosheets ; Optical and Electronic Materials ; Optical communication ; Optoelectronic devices ; Original Research Article ; P-n junctions ; Quantum efficiency ; Radio waves ; Ratios ; Silicon substrates ; Silicon wafers ; Solid State Physics ; Thickness ; Thin films ; Voltage standing wave ratios</subject><ispartof>Journal of electronic materials, 2024-05, Vol.53 (5), p.2591-2600</ispartof><rights>The Minerals, Metals &amp; Materials Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-2eded01727cdb3576b3200b351ae018c18c14a0a3195d70539000f7c50c874e33</cites><orcidid>0000-0001-8193-6975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11004-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11004-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Algarni, Sabah E.</creatorcontrib><creatorcontrib>Qasrawi, A. F.</creatorcontrib><creatorcontrib>Khusayfan, Najla M.</creatorcontrib><creatorcontrib>Alharbi, Seham R.</creatorcontrib><creatorcontrib>Alfhaid, Latifah Hamad Khalid</creatorcontrib><title>p-Si/n-CrSe2 Heterojunctions Designed as High-Frequency Capacitors and Photosensors</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>In this work, polycrystalline n -CrSe 2 nanosheets with thickness of 100 nm are grown on p -type Si wafers by the thermal deposition technique under vacuum pressure of 10 −5 mbar. Structural and optical investigations showed the preferred growth of the trigonal phase of CrSe 2 on Si substrates. Direct allowed transitions within an energy band gap of 2.60 eV were found to be dominant in the films. Silver contacts on the layers allowed construction of hybrid optoelectronic device structure formed from Ag/p-Si Schottky arm and p -Si/ n -CrSe 2 pn junction. The device runs in such a way that forward biasing of the Schottky arm is accompanied by a reverse biasing of the pn junction. It is observed that the hybrid device structure can perform as a high-frequency capacitor. The capacitance–voltage characteristic curves show that these capacitors can respond to ac signals with frequencies of 100 MHz. They also exhibit bandstop filter characteristics allowing the passing of signals with return loss and voltage standing wave ratios exceeding 10 dB and 1.76, respectively, at 60 MHz. The device under study displayed rectifying and photo-sensing properties with an asymmetry ratio of 60 in the dark and 217 under excitation of visible light. Visible light excitation of these photosensors displayed voltage biasing dependence in their current responsivity, external quantum efficiency and specific detectivity, reaching values of 0.24 A/W, 65.2% and 4.83 × 10 9 Jones, respectively. The features of the hybrid devices which use CrSe 2 nanosheets as active media make them good candidates for use in radio wave and visible light communication technologies.</description><subject>Bandstop filters</subject><subject>Capacitance-voltage characteristics</subject><subject>Capacitors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Communication</subject><subject>Design</subject><subject>Dielectric properties</subject><subject>Electrodes</subject><subject>Electronics and Microelectronics</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Glass substrates</subject><subject>Heterojunctions</subject><subject>Instrumentation</subject><subject>Light</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Optical and Electronic Materials</subject><subject>Optical communication</subject><subject>Optoelectronic devices</subject><subject>Original Research Article</subject><subject>P-n junctions</subject><subject>Quantum efficiency</subject><subject>Radio waves</subject><subject>Ratios</subject><subject>Silicon substrates</subject><subject>Silicon wafers</subject><subject>Solid State Physics</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Voltage standing wave ratios</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Ap4Dn2PeSzWZ7lNVaoaBQBW8hzabtFk3WZHvo35u6gjfhwRuGmXmPIeQa4RYB1CQhlmXBgBcMM5HRCRmhLATDqnw_JSMQJTLJhTwnFyntAFBihSOy7NiynXhWx6XjdO56F8Nu723fBp_ovUvtxruGmkTn7WbLZtF97Z23B1qbzti2DzFR4xv6sg19SM6nTFySs7X5SO7qd4_J2-zhtZ6zxfPjU323YFZg0TPuGtcAKq5ssxJSlSvBATJC4wAre5zCgBE4lY0CKaYAsFZWgq1U4YQYk5sht4shf5V6vQv76PNJLYBXIAosVVbxQWVjSCm6te5i-2niQSPoY3l6KE_n8vRPeRqySQymlMV-4-Jf9D-ub1R2cHg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Algarni, Sabah E.</creator><creator>Qasrawi, A. F.</creator><creator>Khusayfan, Najla M.</creator><creator>Alharbi, Seham R.</creator><creator>Alfhaid, Latifah Hamad Khalid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8193-6975</orcidid></search><sort><creationdate>20240501</creationdate><title>p-Si/n-CrSe2 Heterojunctions Designed as High-Frequency Capacitors and Photosensors</title><author>Algarni, Sabah E. ; Qasrawi, A. F. ; Khusayfan, Najla M. ; Alharbi, Seham R. ; Alfhaid, Latifah Hamad Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-2eded01727cdb3576b3200b351ae018c18c14a0a3195d70539000f7c50c874e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandstop filters</topic><topic>Capacitance-voltage characteristics</topic><topic>Capacitors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Communication</topic><topic>Design</topic><topic>Dielectric properties</topic><topic>Electrodes</topic><topic>Electronics and Microelectronics</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Glass substrates</topic><topic>Heterojunctions</topic><topic>Instrumentation</topic><topic>Light</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Optical and Electronic Materials</topic><topic>Optical communication</topic><topic>Optoelectronic devices</topic><topic>Original Research Article</topic><topic>P-n junctions</topic><topic>Quantum efficiency</topic><topic>Radio waves</topic><topic>Ratios</topic><topic>Silicon substrates</topic><topic>Silicon wafers</topic><topic>Solid State Physics</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Voltage standing wave ratios</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Algarni, Sabah E.</creatorcontrib><creatorcontrib>Qasrawi, A. F.</creatorcontrib><creatorcontrib>Khusayfan, Najla M.</creatorcontrib><creatorcontrib>Alharbi, Seham R.</creatorcontrib><creatorcontrib>Alfhaid, Latifah Hamad Khalid</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Algarni, Sabah E.</au><au>Qasrawi, A. F.</au><au>Khusayfan, Najla M.</au><au>Alharbi, Seham R.</au><au>Alfhaid, Latifah Hamad Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p-Si/n-CrSe2 Heterojunctions Designed as High-Frequency Capacitors and Photosensors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>53</volume><issue>5</issue><spage>2591</spage><epage>2600</epage><pages>2591-2600</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In this work, polycrystalline n -CrSe 2 nanosheets with thickness of 100 nm are grown on p -type Si wafers by the thermal deposition technique under vacuum pressure of 10 −5 mbar. Structural and optical investigations showed the preferred growth of the trigonal phase of CrSe 2 on Si substrates. Direct allowed transitions within an energy band gap of 2.60 eV were found to be dominant in the films. Silver contacts on the layers allowed construction of hybrid optoelectronic device structure formed from Ag/p-Si Schottky arm and p -Si/ n -CrSe 2 pn junction. The device runs in such a way that forward biasing of the Schottky arm is accompanied by a reverse biasing of the pn junction. It is observed that the hybrid device structure can perform as a high-frequency capacitor. The capacitance–voltage characteristic curves show that these capacitors can respond to ac signals with frequencies of 100 MHz. They also exhibit bandstop filter characteristics allowing the passing of signals with return loss and voltage standing wave ratios exceeding 10 dB and 1.76, respectively, at 60 MHz. The device under study displayed rectifying and photo-sensing properties with an asymmetry ratio of 60 in the dark and 217 under excitation of visible light. Visible light excitation of these photosensors displayed voltage biasing dependence in their current responsivity, external quantum efficiency and specific detectivity, reaching values of 0.24 A/W, 65.2% and 4.83 × 10 9 Jones, respectively. The features of the hybrid devices which use CrSe 2 nanosheets as active media make them good candidates for use in radio wave and visible light communication technologies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11004-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8193-6975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2024-05, Vol.53 (5), p.2591-2600
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_3028034167
source SpringerNature Complete Journals
subjects Bandstop filters
Capacitance-voltage characteristics
Capacitors
Characterization and Evaluation of Materials
Chemistry and Materials Science
Communication
Design
Dielectric properties
Electrodes
Electronics and Microelectronics
Energy bands
Energy gap
Excitation
Glass substrates
Heterojunctions
Instrumentation
Light
Materials Science
Nanosheets
Optical and Electronic Materials
Optical communication
Optoelectronic devices
Original Research Article
P-n junctions
Quantum efficiency
Radio waves
Ratios
Silicon substrates
Silicon wafers
Solid State Physics
Thickness
Thin films
Voltage standing wave ratios
title p-Si/n-CrSe2 Heterojunctions Designed as High-Frequency Capacitors and Photosensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p-Si/n-CrSe2%20Heterojunctions%20Designed%20as%20High-Frequency%20Capacitors%20and%20Photosensors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Algarni,%20Sabah%20E.&rft.date=2024-05-01&rft.volume=53&rft.issue=5&rft.spage=2591&rft.epage=2600&rft.pages=2591-2600&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11004-0&rft_dat=%3Cproquest_cross%3E3028034167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3028034167&rft_id=info:pmid/&rfr_iscdi=true