Digital twin-driven fault diagnosis for CNC machine tool
Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imb...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2024-04, Vol.131 (11), p.5457-5470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5470 |
---|---|
container_issue | 11 |
container_start_page | 5457 |
container_title | International journal of advanced manufacturing technology |
container_volume | 131 |
creator | Xue, Ruijuan Zhang, Peisen Huang, Zuguang Wang, Jinjiang |
description | Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method. |
doi_str_mv | 10.1007/s00170-022-09978-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3028025715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3028025715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3XP7GdEQUoSBUsMFuuYxdXaVzsFMTbEwgSG9NdzvmudBA6p3BJAdRVAaAKCDBGoK6VJuIAzajgnHCg1SGaAZOacCX1MTopZTPikko9Q_omruNgOzx8xJ60Ob77Hge77wbcRrvuU4kFh5Rx89jgrXWvsfd4SKk7RUfBdsWf_d45erm7fW7uyfJp8dBcL4njtB6IFa31IGklrAwhcBC8blW1kuBWIawcALdKC-ZBOUvbmoGwvIXKOUlrXms-RxfT7i6nt70vg9mkfe7Hl4YD08AqRauRYhPlciol-2B2OW5t_jQUzHchMxUyYyHzU8iIUeKTVEa4X_v8N_2P9QVoV2eS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3028025715</pqid></control><display><type>article</type><title>Digital twin-driven fault diagnosis for CNC machine tool</title><source>Springer Nature - Complete Springer Journals</source><creator>Xue, Ruijuan ; Zhang, Peisen ; Huang, Zuguang ; Wang, Jinjiang</creator><creatorcontrib>Xue, Ruijuan ; Zhang, Peisen ; Huang, Zuguang ; Wang, Jinjiang</creatorcontrib><description>Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09978-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Computer-Aided Engineering (CAD ; Data integration ; Decision trees ; Digital twins ; Engineering ; Fault diagnosis ; Industrial and Production Engineering ; Libraries ; Machine tools ; Mechanical Engineering ; Media Management ; Numerical controls ; Original Article ; Regression analysis ; Spindles</subject><ispartof>International journal of advanced manufacturing technology, 2024-04, Vol.131 (11), p.5457-5470</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</citedby><cites>FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09978-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09978-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Xue, Ruijuan</creatorcontrib><creatorcontrib>Zhang, Peisen</creatorcontrib><creatorcontrib>Huang, Zuguang</creatorcontrib><creatorcontrib>Wang, Jinjiang</creatorcontrib><title>Digital twin-driven fault diagnosis for CNC machine tool</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Data integration</subject><subject>Decision trees</subject><subject>Digital twins</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Industrial and Production Engineering</subject><subject>Libraries</subject><subject>Machine tools</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Numerical controls</subject><subject>Original Article</subject><subject>Regression analysis</subject><subject>Spindles</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3XP7GdEQUoSBUsMFuuYxdXaVzsFMTbEwgSG9NdzvmudBA6p3BJAdRVAaAKCDBGoK6VJuIAzajgnHCg1SGaAZOacCX1MTopZTPikko9Q_omruNgOzx8xJ60Ob77Hge77wbcRrvuU4kFh5Rx89jgrXWvsfd4SKk7RUfBdsWf_d45erm7fW7uyfJp8dBcL4njtB6IFa31IGklrAwhcBC8blW1kuBWIawcALdKC-ZBOUvbmoGwvIXKOUlrXms-RxfT7i6nt70vg9mkfe7Hl4YD08AqRauRYhPlciol-2B2OW5t_jQUzHchMxUyYyHzU8iIUeKTVEa4X_v8N_2P9QVoV2eS</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xue, Ruijuan</creator><creator>Zhang, Peisen</creator><creator>Huang, Zuguang</creator><creator>Wang, Jinjiang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Digital twin-driven fault diagnosis for CNC machine tool</title><author>Xue, Ruijuan ; Zhang, Peisen ; Huang, Zuguang ; Wang, Jinjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Data integration</topic><topic>Decision trees</topic><topic>Digital twins</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Industrial and Production Engineering</topic><topic>Libraries</topic><topic>Machine tools</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Numerical controls</topic><topic>Original Article</topic><topic>Regression analysis</topic><topic>Spindles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Ruijuan</creatorcontrib><creatorcontrib>Zhang, Peisen</creatorcontrib><creatorcontrib>Huang, Zuguang</creatorcontrib><creatorcontrib>Wang, Jinjiang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Ruijuan</au><au>Zhang, Peisen</au><au>Huang, Zuguang</au><au>Wang, Jinjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital twin-driven fault diagnosis for CNC machine tool</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>131</volume><issue>11</issue><spage>5457</spage><epage>5470</epage><pages>5457-5470</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09978-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2024-04, Vol.131 (11), p.5457-5470 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_3028025715 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms CAE) and Design Computer-Aided Engineering (CAD Data integration Decision trees Digital twins Engineering Fault diagnosis Industrial and Production Engineering Libraries Machine tools Mechanical Engineering Media Management Numerical controls Original Article Regression analysis Spindles |
title | Digital twin-driven fault diagnosis for CNC machine tool |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20twin-driven%20fault%20diagnosis%20for%20CNC%20machine%20tool&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Xue,%20Ruijuan&rft.date=2024-04-01&rft.volume=131&rft.issue=11&rft.spage=5457&rft.epage=5470&rft.pages=5457-5470&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09978-4&rft_dat=%3Cproquest_cross%3E3028025715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3028025715&rft_id=info:pmid/&rfr_iscdi=true |