Digital twin-driven fault diagnosis for CNC machine tool

Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2024-04, Vol.131 (11), p.5457-5470
Hauptverfasser: Xue, Ruijuan, Zhang, Peisen, Huang, Zuguang, Wang, Jinjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5470
container_issue 11
container_start_page 5457
container_title International journal of advanced manufacturing technology
container_volume 131
creator Xue, Ruijuan
Zhang, Peisen
Huang, Zuguang
Wang, Jinjiang
description Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.
doi_str_mv 10.1007/s00170-022-09978-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3028025715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3028025715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3XP7GdEQUoSBUsMFuuYxdXaVzsFMTbEwgSG9NdzvmudBA6p3BJAdRVAaAKCDBGoK6VJuIAzajgnHCg1SGaAZOacCX1MTopZTPikko9Q_omruNgOzx8xJ60Ob77Hge77wbcRrvuU4kFh5Rx89jgrXWvsfd4SKk7RUfBdsWf_d45erm7fW7uyfJp8dBcL4njtB6IFa31IGklrAwhcBC8blW1kuBWIawcALdKC-ZBOUvbmoGwvIXKOUlrXms-RxfT7i6nt70vg9mkfe7Hl4YD08AqRauRYhPlciol-2B2OW5t_jQUzHchMxUyYyHzU8iIUeKTVEa4X_v8N_2P9QVoV2eS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3028025715</pqid></control><display><type>article</type><title>Digital twin-driven fault diagnosis for CNC machine tool</title><source>Springer Nature - Complete Springer Journals</source><creator>Xue, Ruijuan ; Zhang, Peisen ; Huang, Zuguang ; Wang, Jinjiang</creator><creatorcontrib>Xue, Ruijuan ; Zhang, Peisen ; Huang, Zuguang ; Wang, Jinjiang</creatorcontrib><description>Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09978-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Computer-Aided Engineering (CAD ; Data integration ; Decision trees ; Digital twins ; Engineering ; Fault diagnosis ; Industrial and Production Engineering ; Libraries ; Machine tools ; Mechanical Engineering ; Media Management ; Numerical controls ; Original Article ; Regression analysis ; Spindles</subject><ispartof>International journal of advanced manufacturing technology, 2024-04, Vol.131 (11), p.5457-5470</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</citedby><cites>FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09978-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09978-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Xue, Ruijuan</creatorcontrib><creatorcontrib>Zhang, Peisen</creatorcontrib><creatorcontrib>Huang, Zuguang</creatorcontrib><creatorcontrib>Wang, Jinjiang</creatorcontrib><title>Digital twin-driven fault diagnosis for CNC machine tool</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Data integration</subject><subject>Decision trees</subject><subject>Digital twins</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Industrial and Production Engineering</subject><subject>Libraries</subject><subject>Machine tools</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Numerical controls</subject><subject>Original Article</subject><subject>Regression analysis</subject><subject>Spindles</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3XP7GdEQUoSBUsMFuuYxdXaVzsFMTbEwgSG9NdzvmudBA6p3BJAdRVAaAKCDBGoK6VJuIAzajgnHCg1SGaAZOacCX1MTopZTPikko9Q_omruNgOzx8xJ60Ob77Hge77wbcRrvuU4kFh5Rx89jgrXWvsfd4SKk7RUfBdsWf_d45erm7fW7uyfJp8dBcL4njtB6IFa31IGklrAwhcBC8blW1kuBWIawcALdKC-ZBOUvbmoGwvIXKOUlrXms-RxfT7i6nt70vg9mkfe7Hl4YD08AqRauRYhPlciol-2B2OW5t_jQUzHchMxUyYyHzU8iIUeKTVEa4X_v8N_2P9QVoV2eS</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xue, Ruijuan</creator><creator>Zhang, Peisen</creator><creator>Huang, Zuguang</creator><creator>Wang, Jinjiang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Digital twin-driven fault diagnosis for CNC machine tool</title><author>Xue, Ruijuan ; Zhang, Peisen ; Huang, Zuguang ; Wang, Jinjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a4dae06154a6fff30439d75b60cbffbc003a7842e07ca1d9204a3d05cc6193983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Data integration</topic><topic>Decision trees</topic><topic>Digital twins</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Industrial and Production Engineering</topic><topic>Libraries</topic><topic>Machine tools</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Numerical controls</topic><topic>Original Article</topic><topic>Regression analysis</topic><topic>Spindles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Ruijuan</creatorcontrib><creatorcontrib>Zhang, Peisen</creatorcontrib><creatorcontrib>Huang, Zuguang</creatorcontrib><creatorcontrib>Wang, Jinjiang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Ruijuan</au><au>Zhang, Peisen</au><au>Huang, Zuguang</au><au>Wang, Jinjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital twin-driven fault diagnosis for CNC machine tool</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>131</volume><issue>11</issue><spage>5457</spage><epage>5470</epage><pages>5457-5470</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Traditional data-driven fault diagnosis methods require a massive amount of data to train diagnosis models. However, the complex and coupled structure of CNC machine tools makes it difficult to obtain enough usable data. Current data generation methods ignore actual operating conditions and have imbalance, which reduces the accuracy of fault diagnosis. To tackle these problems, this paper presents a digital twin-driven fault diagnosis method for CNC machine tools. Firstly, a digital twin model of a CNC machine tool is established and validated. Then, a twin model library is constructed to include multiple twin models under different fault status. A model data fusion method is presented, using the decision tree algorithm Classification and Regression Tree (CART) to train a model selector and actual sensor data as input to select the optimal model from the library and realize fault diagnosis with the model. Finally, taking the CNC machine tool spindle as an example, the stiffness deterioration of the spindle during operation is effectively diagnosed, which verifies the effectiveness and feasibility of the proposed method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09978-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2024-04, Vol.131 (11), p.5457-5470
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_3028025715
source Springer Nature - Complete Springer Journals
subjects Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Data integration
Decision trees
Digital twins
Engineering
Fault diagnosis
Industrial and Production Engineering
Libraries
Machine tools
Mechanical Engineering
Media Management
Numerical controls
Original Article
Regression analysis
Spindles
title Digital twin-driven fault diagnosis for CNC machine tool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20twin-driven%20fault%20diagnosis%20for%20CNC%20machine%20tool&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Xue,%20Ruijuan&rft.date=2024-04-01&rft.volume=131&rft.issue=11&rft.spage=5457&rft.epage=5470&rft.pages=5457-5470&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09978-4&rft_dat=%3Cproquest_cross%3E3028025715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3028025715&rft_id=info:pmid/&rfr_iscdi=true