Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3

The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2024-06, Vol.107 (6), p.4096-4108
Hauptverfasser: Chen, Kaiyuan, Yan, Tianxiang, Lei, Xiuyun, Lanceros‐Méndez, Senentxu, Yuan, Zhi, Fang, Liang, Peng, Biaolin, Wang, Dawei, Liu, Laijun, Zhang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4108
container_issue 6
container_start_page 4096
container_title Journal of the American Ceramic Society
container_volume 107
creator Chen, Kaiyuan
Yan, Tianxiang
Lei, Xiuyun
Lanceros‐Méndez, Senentxu
Yuan, Zhi
Fang, Liang
Peng, Biaolin
Wang, Dawei
Liu, Laijun
Zhang, Qi
description The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.
doi_str_mv 10.1111/jace.19705
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3020795686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020795686</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2255-22ef19e32a45371e073070f548c67d8ba793d786d98556ffb1de5ba243f55e4c3</originalsourceid><addsrcrecordid>eNotkM1Og0AUhSdGE2t14xNM4kYX0PnhMrCsTf1LDS7qmgxwaaehgAON4qqPYOIb9kmkrXdx7r3JyTnJR8g1Zy7vZ7TSKbo8VAxOyIADcEeE3D8lA8aYcFQg2Dm5aJpV__Iw8AbkK7JmYUpa5XRpFsvd9qfFdY1WtxuLtDb4XWGBaWtNSptWJ6YwbUd1mdG6KrSlpS4riwtTlQ3NulKvTdrQPo-5APfm9nXBR2JuermL5G77y1wP3pK5ieQlOct10eDV_x6S94fpfPLkzKLH58l45tRCADhCYM5DlEJ7IBVHpiRTLAcvSH2VBYlWocxU4GdhAODnecIzhEQLT-YA6KVySG6OubWtPjbYtPGq2tiyr4wlE0yF4Ad-7-JH16cpsItra9badjFn8R5rvMcaH7DGL-PJ9HDJPyztbSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020795686</pqid></control><display><type>article</type><title>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Kaiyuan ; Yan, Tianxiang ; Lei, Xiuyun ; Lanceros‐Méndez, Senentxu ; Yuan, Zhi ; Fang, Liang ; Peng, Biaolin ; Wang, Dawei ; Liu, Laijun ; Zhang, Qi</creator><creatorcontrib>Chen, Kaiyuan ; Yan, Tianxiang ; Lei, Xiuyun ; Lanceros‐Méndez, Senentxu ; Yuan, Zhi ; Fang, Liang ; Peng, Biaolin ; Wang, Dawei ; Liu, Laijun ; Zhang, Qi</creatorcontrib><description>The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19705</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Coupling ; Dipoles ; Dynamic stability ; ferroelectric ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; phase transition ; Phase transitions ; piezoelectric ; Piezoelectricity ; polar nanoregions ; Polarization ; relaxor</subject><ispartof>Journal of the American Ceramic Society, 2024-06, Vol.107 (6), p.4096-4108</ispartof><rights>2024 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1368-4259 ; 0000-0001-6568-3322 ; 0000-0003-3602-4074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.19705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.19705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Chen, Kaiyuan</creatorcontrib><creatorcontrib>Yan, Tianxiang</creatorcontrib><creatorcontrib>Lei, Xiuyun</creatorcontrib><creatorcontrib>Lanceros‐Méndez, Senentxu</creatorcontrib><creatorcontrib>Yuan, Zhi</creatorcontrib><creatorcontrib>Fang, Liang</creatorcontrib><creatorcontrib>Peng, Biaolin</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Liu, Laijun</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><title>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</title><title>Journal of the American Ceramic Society</title><description>The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.</description><subject>Coupling</subject><subject>Dipoles</subject><subject>Dynamic stability</subject><subject>ferroelectric</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>piezoelectric</subject><subject>Piezoelectricity</subject><subject>polar nanoregions</subject><subject>Polarization</subject><subject>relaxor</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1Og0AUhSdGE2t14xNM4kYX0PnhMrCsTf1LDS7qmgxwaaehgAON4qqPYOIb9kmkrXdx7r3JyTnJR8g1Zy7vZ7TSKbo8VAxOyIADcEeE3D8lA8aYcFQg2Dm5aJpV__Iw8AbkK7JmYUpa5XRpFsvd9qfFdY1WtxuLtDb4XWGBaWtNSptWJ6YwbUd1mdG6KrSlpS4riwtTlQ3NulKvTdrQPo-5APfm9nXBR2JuermL5G77y1wP3pK5ieQlOct10eDV_x6S94fpfPLkzKLH58l45tRCADhCYM5DlEJ7IBVHpiRTLAcvSH2VBYlWocxU4GdhAODnecIzhEQLT-YA6KVySG6OubWtPjbYtPGq2tiyr4wlE0yF4Ad-7-JH16cpsItra9badjFn8R5rvMcaH7DGL-PJ9HDJPyztbSE</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Chen, Kaiyuan</creator><creator>Yan, Tianxiang</creator><creator>Lei, Xiuyun</creator><creator>Lanceros‐Méndez, Senentxu</creator><creator>Yuan, Zhi</creator><creator>Fang, Liang</creator><creator>Peng, Biaolin</creator><creator>Wang, Dawei</creator><creator>Liu, Laijun</creator><creator>Zhang, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1368-4259</orcidid><orcidid>https://orcid.org/0000-0001-6568-3322</orcidid><orcidid>https://orcid.org/0000-0003-3602-4074</orcidid></search><sort><creationdate>202406</creationdate><title>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</title><author>Chen, Kaiyuan ; Yan, Tianxiang ; Lei, Xiuyun ; Lanceros‐Méndez, Senentxu ; Yuan, Zhi ; Fang, Liang ; Peng, Biaolin ; Wang, Dawei ; Liu, Laijun ; Zhang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2255-22ef19e32a45371e073070f548c67d8ba793d786d98556ffb1de5ba243f55e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupling</topic><topic>Dipoles</topic><topic>Dynamic stability</topic><topic>ferroelectric</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>piezoelectric</topic><topic>Piezoelectricity</topic><topic>polar nanoregions</topic><topic>Polarization</topic><topic>relaxor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kaiyuan</creatorcontrib><creatorcontrib>Yan, Tianxiang</creatorcontrib><creatorcontrib>Lei, Xiuyun</creatorcontrib><creatorcontrib>Lanceros‐Méndez, Senentxu</creatorcontrib><creatorcontrib>Yuan, Zhi</creatorcontrib><creatorcontrib>Fang, Liang</creatorcontrib><creatorcontrib>Peng, Biaolin</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Liu, Laijun</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kaiyuan</au><au>Yan, Tianxiang</au><au>Lei, Xiuyun</au><au>Lanceros‐Méndez, Senentxu</au><au>Yuan, Zhi</au><au>Fang, Liang</au><au>Peng, Biaolin</au><au>Wang, Dawei</au><au>Liu, Laijun</au><au>Zhang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2024-06</date><risdate>2024</risdate><volume>107</volume><issue>6</issue><spage>4096</spage><epage>4108</epage><pages>4096-4108</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19705</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1368-4259</orcidid><orcidid>https://orcid.org/0000-0001-6568-3322</orcidid><orcidid>https://orcid.org/0000-0003-3602-4074</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2024-06, Vol.107 (6), p.4096-4108
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_3020795686
source Wiley Online Library Journals Frontfile Complete
subjects Coupling
Dipoles
Dynamic stability
ferroelectric
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
phase transition
Phase transitions
piezoelectric
Piezoelectricity
polar nanoregions
Polarization
relaxor
title Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20high%E2%80%90temperature%20piezoelectric%20stability%20and%20polar%20nanoregions%20dynamics%20in%200.55Bi(Mg1/2Ti1/2)O3%E2%80%930.45PbTiO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Chen,%20Kaiyuan&rft.date=2024-06&rft.volume=107&rft.issue=6&rft.spage=4096&rft.epage=4108&rft.pages=4096-4108&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19705&rft_dat=%3Cproquest_wiley%3E3020795686%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3020795686&rft_id=info:pmid/&rfr_iscdi=true