Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3
The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2024-06, Vol.107 (6), p.4096-4108 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4108 |
---|---|
container_issue | 6 |
container_start_page | 4096 |
container_title | Journal of the American Ceramic Society |
container_volume | 107 |
creator | Chen, Kaiyuan Yan, Tianxiang Lei, Xiuyun Lanceros‐Méndez, Senentxu Yuan, Zhi Fang, Liang Peng, Biaolin Wang, Dawei Liu, Laijun Zhang, Qi |
description | The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system. |
doi_str_mv | 10.1111/jace.19705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3020795686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020795686</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2255-22ef19e32a45371e073070f548c67d8ba793d786d98556ffb1de5ba243f55e4c3</originalsourceid><addsrcrecordid>eNotkM1Og0AUhSdGE2t14xNM4kYX0PnhMrCsTf1LDS7qmgxwaaehgAON4qqPYOIb9kmkrXdx7r3JyTnJR8g1Zy7vZ7TSKbo8VAxOyIADcEeE3D8lA8aYcFQg2Dm5aJpV__Iw8AbkK7JmYUpa5XRpFsvd9qfFdY1WtxuLtDb4XWGBaWtNSptWJ6YwbUd1mdG6KrSlpS4riwtTlQ3NulKvTdrQPo-5APfm9nXBR2JuermL5G77y1wP3pK5ieQlOct10eDV_x6S94fpfPLkzKLH58l45tRCADhCYM5DlEJ7IBVHpiRTLAcvSH2VBYlWocxU4GdhAODnecIzhEQLT-YA6KVySG6OubWtPjbYtPGq2tiyr4wlE0yF4Ad-7-JH16cpsItra9badjFn8R5rvMcaH7DGL-PJ9HDJPyztbSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020795686</pqid></control><display><type>article</type><title>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Kaiyuan ; Yan, Tianxiang ; Lei, Xiuyun ; Lanceros‐Méndez, Senentxu ; Yuan, Zhi ; Fang, Liang ; Peng, Biaolin ; Wang, Dawei ; Liu, Laijun ; Zhang, Qi</creator><creatorcontrib>Chen, Kaiyuan ; Yan, Tianxiang ; Lei, Xiuyun ; Lanceros‐Méndez, Senentxu ; Yuan, Zhi ; Fang, Liang ; Peng, Biaolin ; Wang, Dawei ; Liu, Laijun ; Zhang, Qi</creatorcontrib><description>The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19705</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Coupling ; Dipoles ; Dynamic stability ; ferroelectric ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; phase transition ; Phase transitions ; piezoelectric ; Piezoelectricity ; polar nanoregions ; Polarization ; relaxor</subject><ispartof>Journal of the American Ceramic Society, 2024-06, Vol.107 (6), p.4096-4108</ispartof><rights>2024 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1368-4259 ; 0000-0001-6568-3322 ; 0000-0003-3602-4074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.19705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.19705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Chen, Kaiyuan</creatorcontrib><creatorcontrib>Yan, Tianxiang</creatorcontrib><creatorcontrib>Lei, Xiuyun</creatorcontrib><creatorcontrib>Lanceros‐Méndez, Senentxu</creatorcontrib><creatorcontrib>Yuan, Zhi</creatorcontrib><creatorcontrib>Fang, Liang</creatorcontrib><creatorcontrib>Peng, Biaolin</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Liu, Laijun</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><title>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</title><title>Journal of the American Ceramic Society</title><description>The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.</description><subject>Coupling</subject><subject>Dipoles</subject><subject>Dynamic stability</subject><subject>ferroelectric</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>piezoelectric</subject><subject>Piezoelectricity</subject><subject>polar nanoregions</subject><subject>Polarization</subject><subject>relaxor</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1Og0AUhSdGE2t14xNM4kYX0PnhMrCsTf1LDS7qmgxwaaehgAON4qqPYOIb9kmkrXdx7r3JyTnJR8g1Zy7vZ7TSKbo8VAxOyIADcEeE3D8lA8aYcFQg2Dm5aJpV__Iw8AbkK7JmYUpa5XRpFsvd9qfFdY1WtxuLtDb4XWGBaWtNSptWJ6YwbUd1mdG6KrSlpS4riwtTlQ3NulKvTdrQPo-5APfm9nXBR2JuermL5G77y1wP3pK5ieQlOct10eDV_x6S94fpfPLkzKLH58l45tRCADhCYM5DlEJ7IBVHpiRTLAcvSH2VBYlWocxU4GdhAODnecIzhEQLT-YA6KVySG6OubWtPjbYtPGq2tiyr4wlE0yF4Ad-7-JH16cpsItra9badjFn8R5rvMcaH7DGL-PJ9HDJPyztbSE</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Chen, Kaiyuan</creator><creator>Yan, Tianxiang</creator><creator>Lei, Xiuyun</creator><creator>Lanceros‐Méndez, Senentxu</creator><creator>Yuan, Zhi</creator><creator>Fang, Liang</creator><creator>Peng, Biaolin</creator><creator>Wang, Dawei</creator><creator>Liu, Laijun</creator><creator>Zhang, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1368-4259</orcidid><orcidid>https://orcid.org/0000-0001-6568-3322</orcidid><orcidid>https://orcid.org/0000-0003-3602-4074</orcidid></search><sort><creationdate>202406</creationdate><title>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</title><author>Chen, Kaiyuan ; Yan, Tianxiang ; Lei, Xiuyun ; Lanceros‐Méndez, Senentxu ; Yuan, Zhi ; Fang, Liang ; Peng, Biaolin ; Wang, Dawei ; Liu, Laijun ; Zhang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2255-22ef19e32a45371e073070f548c67d8ba793d786d98556ffb1de5ba243f55e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupling</topic><topic>Dipoles</topic><topic>Dynamic stability</topic><topic>ferroelectric</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>piezoelectric</topic><topic>Piezoelectricity</topic><topic>polar nanoregions</topic><topic>Polarization</topic><topic>relaxor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kaiyuan</creatorcontrib><creatorcontrib>Yan, Tianxiang</creatorcontrib><creatorcontrib>Lei, Xiuyun</creatorcontrib><creatorcontrib>Lanceros‐Méndez, Senentxu</creatorcontrib><creatorcontrib>Yuan, Zhi</creatorcontrib><creatorcontrib>Fang, Liang</creatorcontrib><creatorcontrib>Peng, Biaolin</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Liu, Laijun</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kaiyuan</au><au>Yan, Tianxiang</au><au>Lei, Xiuyun</au><au>Lanceros‐Méndez, Senentxu</au><au>Yuan, Zhi</au><au>Fang, Liang</au><au>Peng, Biaolin</au><au>Wang, Dawei</au><au>Liu, Laijun</au><au>Zhang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2024-06</date><risdate>2024</risdate><volume>107</volume><issue>6</issue><spage>4096</spage><epage>4108</epage><pages>4096-4108</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 ceramics exhibit notable dielectric anomalies across three temperature ranges. The low‐temperature anomaly is attributed to a reentrant dipole glass‐like relaxor behavior; the mid‐temperature anomaly results from a ferro‐paraelectric phase transition; and the high‐temperature anomaly is associated with a diffuse phase transition. The system demonstrates favorable piezoelectric, electromechanical, and ferroelectric properties. Specifically, the ceramic presents a piezoelectric coefficient (d33) of 220 pC/N, an electromechanical coupling factor (kp) of 27%, and a remanant polarization (Pr) of 32.5 μC/cm2. Moreover, it maintains an operational capability up to 643 K. The unsaturated P(E) loops are formed through the coupling polarization between polar nanoregions (PNRs) and P4mm ferroelectric domains. By examining the electrical modulus, the dynamic PNRs resulting from ferroelectric phonon localization and the formation of P4mm ferroelectric domains were analyzed. The result reveals a mesoscale coupling relationship between the origin of high‐temperature piezoelectric stability and the dynamics of PNRs, thereby providing noble insights into the (1 − x)BiMeO3–xPbTiO3 system.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19705</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1368-4259</orcidid><orcidid>https://orcid.org/0000-0001-6568-3322</orcidid><orcidid>https://orcid.org/0000-0003-3602-4074</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2024-06, Vol.107 (6), p.4096-4108 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_3020795686 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Coupling Dipoles Dynamic stability ferroelectric Ferroelectric domains Ferroelectric materials Ferroelectricity phase transition Phase transitions piezoelectric Piezoelectricity polar nanoregions Polarization relaxor |
title | Origin of high‐temperature piezoelectric stability and polar nanoregions dynamics in 0.55Bi(Mg1/2Ti1/2)O3–0.45PbTiO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20high%E2%80%90temperature%20piezoelectric%20stability%20and%20polar%20nanoregions%20dynamics%20in%200.55Bi(Mg1/2Ti1/2)O3%E2%80%930.45PbTiO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Chen,%20Kaiyuan&rft.date=2024-06&rft.volume=107&rft.issue=6&rft.spage=4096&rft.epage=4108&rft.pages=4096-4108&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19705&rft_dat=%3Cproquest_wiley%3E3020795686%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3020795686&rft_id=info:pmid/&rfr_iscdi=true |