Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation
Contemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all thes...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2024-04, Vol.45 (5), p.4319-4337 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4337 |
---|---|
container_issue | 5 |
container_start_page | 4319 |
container_title | Polymer composites |
container_volume | 45 |
creator | Łapińska, Anna Grochowska, Natalia Filak, Karolina Dużyńska, Anna Polański, Marek Wyrębska, Iwona Jóźwik, Paweł Gołofit, Tomasz Dydek, Kamil Michalski, Przemysław P. Plichta, Andrzej |
description | Contemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all these functions can be designed, but there is usually not just one but several different materials with advanced processing requirements; therefore, a simple manufacturing method providing percolation path formation involving powder mixing and hot pressing of providing excellent flexibility terpolymer comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomeric units (THV)‐based nanocomposites is presented here. The addition of the graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) significantly improves the EMI shielding effectiveness, up to SETOT = 23 dB for the GNP filler, SETOT = 17 dB for the MWCNT/GNP filler per 1 mm samples thickness and enhances almost 900% the thermal conductivity to almost 2 W/mK per GNP filler. Besides this improvement, the electrical conductivity remains at a low level, not surpassing 1.5 S/cm, which is, as mentioned above, beneficial in many applications, especially thermal management. Moreover, the proposed material is an excellent alternative to flexible foam or sponges.
Highlights
Structural, electrical, EMI shielding, and thermal properties of flexible THV/GNP, THV/MWCNT, and THV/MWCNT/GNP nanocomposites are shown here.
The oriented, long as over 1 mm filler paths are observed.
The GNP filler provides the best thermal conductivity enhancement of over 800% compared to bare polymer.
The EMI shielding effectiveness is dominated by absorption for all THV‐based nanocomposites.
The electrical conductivity follows the power law, reaching σ = 1.49 S/cm for GNP‐filled nanocomposites.
(Left upper corner) Photo of manufactured flexible, fluorocarbon composite, (right upper corner) SEM photo of percolation paths of representative sample, (down) summary of most prominent features (including thermal conductivity, EMI shielding effectiveness and electrical conductivity) of THV/GNP series. |
doi_str_mv | 10.1002/pc.28061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3020795348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020795348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2541-7042501b304c4d45bcf8cf3a14a456b8748e96febb2c3c6928eb026f26f74ca93</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5m8yM0sprRYqutB1SDI3NmU6GZOp2p2P4DP6JI7WrXDgbD7uhYPQOSUTSgi76uyElUTSAzSiuSgzksvqEI0IK1hW8qo4RicprQdJpeQjpOcNvHvTALY6mtB-fXwanaDGrtmGGLrQ7DYQsQ2bLiTfQ8IuRAzOge39K-DZ3QKnlYem9u0z1m2NV6B7XPuUfKd7H9pTdOR0k-Dsr8foaT57nN5my_ubxfR6mVmWC5oVRLCcUMOJsKIWubGutI5rKrTIpSkLUUIlHRjDLLeyYiUYwqQbUgirKz5GF_u7XQwvW0i9WodtbIeXihNGiirnohzU5V7ZGFKK4FQX_UbHnaJE_QyoOqt-BxxotqdvvoHdv049TPf-G8Z_cog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020795348</pqid></control><display><type>article</type><title>Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation</title><source>Wiley Journals</source><creator>Łapińska, Anna ; Grochowska, Natalia ; Filak, Karolina ; Dużyńska, Anna ; Polański, Marek ; Wyrębska, Iwona ; Jóźwik, Paweł ; Gołofit, Tomasz ; Dydek, Kamil ; Michalski, Przemysław P. ; Plichta, Andrzej</creator><creatorcontrib>Łapińska, Anna ; Grochowska, Natalia ; Filak, Karolina ; Dużyńska, Anna ; Polański, Marek ; Wyrębska, Iwona ; Jóźwik, Paweł ; Gołofit, Tomasz ; Dydek, Kamil ; Michalski, Przemysław P. ; Plichta, Andrzej</creatorcontrib><description>Contemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all these functions can be designed, but there is usually not just one but several different materials with advanced processing requirements; therefore, a simple manufacturing method providing percolation path formation involving powder mixing and hot pressing of providing excellent flexibility terpolymer comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomeric units (THV)‐based nanocomposites is presented here. The addition of the graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) significantly improves the EMI shielding effectiveness, up to SETOT = 23 dB for the GNP filler, SETOT = 17 dB for the MWCNT/GNP filler per 1 mm samples thickness and enhances almost 900% the thermal conductivity to almost 2 W/mK per GNP filler. Besides this improvement, the electrical conductivity remains at a low level, not surpassing 1.5 S/cm, which is, as mentioned above, beneficial in many applications, especially thermal management. Moreover, the proposed material is an excellent alternative to flexible foam or sponges.
Highlights
Structural, electrical, EMI shielding, and thermal properties of flexible THV/GNP, THV/MWCNT, and THV/MWCNT/GNP nanocomposites are shown here.
The oriented, long as over 1 mm filler paths are observed.
The GNP filler provides the best thermal conductivity enhancement of over 800% compared to bare polymer.
The EMI shielding effectiveness is dominated by absorption for all THV‐based nanocomposites.
The electrical conductivity follows the power law, reaching σ = 1.49 S/cm for GNP‐filled nanocomposites.
(Left upper corner) Photo of manufactured flexible, fluorocarbon composite, (right upper corner) SEM photo of percolation paths of representative sample, (down) summary of most prominent features (including thermal conductivity, EMI shielding effectiveness and electrical conductivity) of THV/GNP series.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28061</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Effectiveness ; electrical conductivity ; Electrical resistivity ; Electromagnetic interference ; Electromagnetic radiation ; Electromagnetic shielding ; EMI shielding ; Fillers ; Flammability ; flexible ; Fluoropolymers ; Graphene ; Heat conductivity ; Heat transfer ; Hot pressing ; Low level ; Multi wall carbon nanotubes ; multifunctional ; multiwalled carbon nanotubes ; Nanocomposites ; Overheating ; Percolation ; polymer nanocomposites ; Production methods ; Terpolymers ; Thermal conductivity ; Thermal management ; Thermodynamic properties ; Vinylidene ; Vinylidene fluoride</subject><ispartof>Polymer composites, 2024-04, Vol.45 (5), p.4319-4337</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2541-7042501b304c4d45bcf8cf3a14a456b8748e96febb2c3c6928eb026f26f74ca93</cites><orcidid>0000-0002-7005-9273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28061$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28061$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Łapińska, Anna</creatorcontrib><creatorcontrib>Grochowska, Natalia</creatorcontrib><creatorcontrib>Filak, Karolina</creatorcontrib><creatorcontrib>Dużyńska, Anna</creatorcontrib><creatorcontrib>Polański, Marek</creatorcontrib><creatorcontrib>Wyrębska, Iwona</creatorcontrib><creatorcontrib>Jóźwik, Paweł</creatorcontrib><creatorcontrib>Gołofit, Tomasz</creatorcontrib><creatorcontrib>Dydek, Kamil</creatorcontrib><creatorcontrib>Michalski, Przemysław P.</creatorcontrib><creatorcontrib>Plichta, Andrzej</creatorcontrib><title>Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation</title><title>Polymer composites</title><description>Contemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all these functions can be designed, but there is usually not just one but several different materials with advanced processing requirements; therefore, a simple manufacturing method providing percolation path formation involving powder mixing and hot pressing of providing excellent flexibility terpolymer comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomeric units (THV)‐based nanocomposites is presented here. The addition of the graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) significantly improves the EMI shielding effectiveness, up to SETOT = 23 dB for the GNP filler, SETOT = 17 dB for the MWCNT/GNP filler per 1 mm samples thickness and enhances almost 900% the thermal conductivity to almost 2 W/mK per GNP filler. Besides this improvement, the electrical conductivity remains at a low level, not surpassing 1.5 S/cm, which is, as mentioned above, beneficial in many applications, especially thermal management. Moreover, the proposed material is an excellent alternative to flexible foam or sponges.
Highlights
Structural, electrical, EMI shielding, and thermal properties of flexible THV/GNP, THV/MWCNT, and THV/MWCNT/GNP nanocomposites are shown here.
The oriented, long as over 1 mm filler paths are observed.
The GNP filler provides the best thermal conductivity enhancement of over 800% compared to bare polymer.
The EMI shielding effectiveness is dominated by absorption for all THV‐based nanocomposites.
The electrical conductivity follows the power law, reaching σ = 1.49 S/cm for GNP‐filled nanocomposites.
(Left upper corner) Photo of manufactured flexible, fluorocarbon composite, (right upper corner) SEM photo of percolation paths of representative sample, (down) summary of most prominent features (including thermal conductivity, EMI shielding effectiveness and electrical conductivity) of THV/GNP series.</description><subject>Effectiveness</subject><subject>electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic shielding</subject><subject>EMI shielding</subject><subject>Fillers</subject><subject>Flammability</subject><subject>flexible</subject><subject>Fluoropolymers</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hot pressing</subject><subject>Low level</subject><subject>Multi wall carbon nanotubes</subject><subject>multifunctional</subject><subject>multiwalled carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Overheating</subject><subject>Percolation</subject><subject>polymer nanocomposites</subject><subject>Production methods</subject><subject>Terpolymers</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Thermodynamic properties</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AgBN26m5m8yM0sprRYqutB1SDI3NmU6GZOp2p2P4DP6JI7WrXDgbD7uhYPQOSUTSgi76uyElUTSAzSiuSgzksvqEI0IK1hW8qo4RicprQdJpeQjpOcNvHvTALY6mtB-fXwanaDGrtmGGLrQ7DYQsQ2bLiTfQ8IuRAzOge39K-DZ3QKnlYem9u0z1m2NV6B7XPuUfKd7H9pTdOR0k-Dsr8foaT57nN5my_ubxfR6mVmWC5oVRLCcUMOJsKIWubGutI5rKrTIpSkLUUIlHRjDLLeyYiUYwqQbUgirKz5GF_u7XQwvW0i9WodtbIeXihNGiirnohzU5V7ZGFKK4FQX_UbHnaJE_QyoOqt-BxxotqdvvoHdv049TPf-G8Z_cog</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Łapińska, Anna</creator><creator>Grochowska, Natalia</creator><creator>Filak, Karolina</creator><creator>Dużyńska, Anna</creator><creator>Polański, Marek</creator><creator>Wyrębska, Iwona</creator><creator>Jóźwik, Paweł</creator><creator>Gołofit, Tomasz</creator><creator>Dydek, Kamil</creator><creator>Michalski, Przemysław P.</creator><creator>Plichta, Andrzej</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7005-9273</orcidid></search><sort><creationdate>20240410</creationdate><title>Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation</title><author>Łapińska, Anna ; Grochowska, Natalia ; Filak, Karolina ; Dużyńska, Anna ; Polański, Marek ; Wyrębska, Iwona ; Jóźwik, Paweł ; Gołofit, Tomasz ; Dydek, Kamil ; Michalski, Przemysław P. ; Plichta, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2541-7042501b304c4d45bcf8cf3a14a456b8748e96febb2c3c6928eb026f26f74ca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Effectiveness</topic><topic>electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic shielding</topic><topic>EMI shielding</topic><topic>Fillers</topic><topic>Flammability</topic><topic>flexible</topic><topic>Fluoropolymers</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hot pressing</topic><topic>Low level</topic><topic>Multi wall carbon nanotubes</topic><topic>multifunctional</topic><topic>multiwalled carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Overheating</topic><topic>Percolation</topic><topic>polymer nanocomposites</topic><topic>Production methods</topic><topic>Terpolymers</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Thermodynamic properties</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łapińska, Anna</creatorcontrib><creatorcontrib>Grochowska, Natalia</creatorcontrib><creatorcontrib>Filak, Karolina</creatorcontrib><creatorcontrib>Dużyńska, Anna</creatorcontrib><creatorcontrib>Polański, Marek</creatorcontrib><creatorcontrib>Wyrębska, Iwona</creatorcontrib><creatorcontrib>Jóźwik, Paweł</creatorcontrib><creatorcontrib>Gołofit, Tomasz</creatorcontrib><creatorcontrib>Dydek, Kamil</creatorcontrib><creatorcontrib>Michalski, Przemysław P.</creatorcontrib><creatorcontrib>Plichta, Andrzej</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łapińska, Anna</au><au>Grochowska, Natalia</au><au>Filak, Karolina</au><au>Dużyńska, Anna</au><au>Polański, Marek</au><au>Wyrębska, Iwona</au><au>Jóźwik, Paweł</au><au>Gołofit, Tomasz</au><au>Dydek, Kamil</au><au>Michalski, Przemysław P.</au><au>Plichta, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation</atitle><jtitle>Polymer composites</jtitle><date>2024-04-10</date><risdate>2024</risdate><volume>45</volume><issue>5</issue><spage>4319</spage><epage>4337</epage><pages>4319-4337</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Contemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all these functions can be designed, but there is usually not just one but several different materials with advanced processing requirements; therefore, a simple manufacturing method providing percolation path formation involving powder mixing and hot pressing of providing excellent flexibility terpolymer comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomeric units (THV)‐based nanocomposites is presented here. The addition of the graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) significantly improves the EMI shielding effectiveness, up to SETOT = 23 dB for the GNP filler, SETOT = 17 dB for the MWCNT/GNP filler per 1 mm samples thickness and enhances almost 900% the thermal conductivity to almost 2 W/mK per GNP filler. Besides this improvement, the electrical conductivity remains at a low level, not surpassing 1.5 S/cm, which is, as mentioned above, beneficial in many applications, especially thermal management. Moreover, the proposed material is an excellent alternative to flexible foam or sponges.
Highlights
Structural, electrical, EMI shielding, and thermal properties of flexible THV/GNP, THV/MWCNT, and THV/MWCNT/GNP nanocomposites are shown here.
The oriented, long as over 1 mm filler paths are observed.
The GNP filler provides the best thermal conductivity enhancement of over 800% compared to bare polymer.
The EMI shielding effectiveness is dominated by absorption for all THV‐based nanocomposites.
The electrical conductivity follows the power law, reaching σ = 1.49 S/cm for GNP‐filled nanocomposites.
(Left upper corner) Photo of manufactured flexible, fluorocarbon composite, (right upper corner) SEM photo of percolation paths of representative sample, (down) summary of most prominent features (including thermal conductivity, EMI shielding effectiveness and electrical conductivity) of THV/GNP series.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.28061</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7005-9273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2024-04, Vol.45 (5), p.4319-4337 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_3020795348 |
source | Wiley Journals |
subjects | Effectiveness electrical conductivity Electrical resistivity Electromagnetic interference Electromagnetic radiation Electromagnetic shielding EMI shielding Fillers Flammability flexible Fluoropolymers Graphene Heat conductivity Heat transfer Hot pressing Low level Multi wall carbon nanotubes multifunctional multiwalled carbon nanotubes Nanocomposites Overheating Percolation polymer nanocomposites Production methods Terpolymers Thermal conductivity Thermal management Thermodynamic properties Vinylidene Vinylidene fluoride |
title | Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20carbon%E2%80%90based%20fluoropolymer%20composites%20for%20effective%20EMI%20shielding%20and%20heat%20dissipation&rft.jtitle=Polymer%20composites&rft.au=%C5%81api%C5%84ska,%20Anna&rft.date=2024-04-10&rft.volume=45&rft.issue=5&rft.spage=4319&rft.epage=4337&rft.pages=4319-4337&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28061&rft_dat=%3Cproquest_cross%3E3020795348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3020795348&rft_id=info:pmid/&rfr_iscdi=true |