Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride‐Ba0.8Sr0.2TiO3 nanocomposites

Poly(vinylidene)fluoride‐Ba0.8Sr0.2TiO3 (PVDF‐BST) trilayered nanocomposites (with different vol% loading of BST nanoparticles, i.e. 0.75%, 1.50%, 2.25% and 3.00%) has been processed by the tape casting technique. The upper and lower layers of the nanocomposites are casted in the same direction, whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2024-04, Vol.45 (5), p.4561-4572
Hauptverfasser: Jaidka, Sachin, Singh, Dwijendra P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4572
container_issue 5
container_start_page 4561
container_title Polymer composites
container_volume 45
creator Jaidka, Sachin
Singh, Dwijendra P.
description Poly(vinylidene)fluoride‐Ba0.8Sr0.2TiO3 (PVDF‐BST) trilayered nanocomposites (with different vol% loading of BST nanoparticles, i.e. 0.75%, 1.50%, 2.25% and 3.00%) has been processed by the tape casting technique. The upper and lower layers of the nanocomposites are casted in the same direction, whereas the middle layer is casted in the opposite direction. The trilayered PVDF‐BST nanocomposite consisting of 3.00 vol% of BST nanoparticles exhibited high dielectric permittivity (~25), low tangent loss (~0.03) and moderately high breakdown strength (BDS ~282 MV/m). Moreover, it also possesses a high discharge energy density (~7.8 J/cc at 1400 kV/cm) and efficiency (~93%). A mechanism for the excellent energy storage behavior and dielectric properties has been proposed. Where, moderately high BDS and low tangent loss are associated with the spatial distribution of the local electric field at interlayer interfaces of PVDF‐BST trilayered nanocomposites, which restricts the conduction of charge carriers at high electric field. The ultrahigh efficiency and enhanced discharge energy density is attributed to the formation of interfacial dipoles at various interfaces such as interlayer, intralayer (PVDF/PVDF), and PVDF/BST interfaces. These investigations would be adopted as a futuristic strategy for developing excellently efficient polymer‐ceramic nanocomposites for the high energy density capacitors used in pulsed power applications. Highlights PVDF‐BST trilayered nanocomposites exhibit high ε′ ~25 and low tanδ ~0.03. Nanocomposite shows ultra‐high energy efficiency ~93% and enhanced UD ~ 7.8 J/cc. Mechanism for the excellent energy storage and dielectric properties Relies on the interfacial dipoles and distribution of the local electric field. Synthesis and properties of trilayered PVDF‐BST nanocomposite thick films.
doi_str_mv 10.1002/pc.28081
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3020794766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3020794766</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2211-cdf7d9c0b8e4c34bf800d7b655cd9309567e2beda2fe226da8aa9576b138057c3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYMoWKvgIwS83pqf7iZ7qcU_EBTU6yWbTNqUNFmzW2XvfARfwJfzSYzVi-EMw5nvwEHolJIZJYSdd3rGJJF0D01oOZcFKat6H00IE6yQvBaH6Kjv19lJq4pP0NeLH5JaueUKg7VOOwh6xCoYDGGlggaDjev1SqUl5BOk5YgNhN4N2TVgH9_zKOPCEkeLgwrROu8hYRfwkJxXI6TM6KIf31wYvcvPgK3fxpTX74_PS0Vm8imRGXt2D3xH0HHTxZwA_TE6sMr3cPKvU_RyffW8uC3uH27uFhf3RccYpYU2Vphak1bCXPN5ayUhRrRVWWpTc1KXlQDWglHMAmOVUVKpuhRVS7kkpdB8is7-uF2Kr1voh2YdtynkyIYTRkQ9F7mtKSr-XO_Ow9h0yW1UGhtKmt_mm043u-abx8VO-Q-6q3vm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3020794766</pqid></control><display><type>article</type><title>Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride‐Ba0.8Sr0.2TiO3 nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jaidka, Sachin ; Singh, Dwijendra P.</creator><creatorcontrib>Jaidka, Sachin ; Singh, Dwijendra P.</creatorcontrib><description>Poly(vinylidene)fluoride‐Ba0.8Sr0.2TiO3 (PVDF‐BST) trilayered nanocomposites (with different vol% loading of BST nanoparticles, i.e. 0.75%, 1.50%, 2.25% and 3.00%) has been processed by the tape casting technique. The upper and lower layers of the nanocomposites are casted in the same direction, whereas the middle layer is casted in the opposite direction. The trilayered PVDF‐BST nanocomposite consisting of 3.00 vol% of BST nanoparticles exhibited high dielectric permittivity (~25), low tangent loss (~0.03) and moderately high breakdown strength (BDS ~282 MV/m). Moreover, it also possesses a high discharge energy density (~7.8 J/cc at 1400 kV/cm) and efficiency (~93%). A mechanism for the excellent energy storage behavior and dielectric properties has been proposed. Where, moderately high BDS and low tangent loss are associated with the spatial distribution of the local electric field at interlayer interfaces of PVDF‐BST trilayered nanocomposites, which restricts the conduction of charge carriers at high electric field. The ultrahigh efficiency and enhanced discharge energy density is attributed to the formation of interfacial dipoles at various interfaces such as interlayer, intralayer (PVDF/PVDF), and PVDF/BST interfaces. These investigations would be adopted as a futuristic strategy for developing excellently efficient polymer‐ceramic nanocomposites for the high energy density capacitors used in pulsed power applications. Highlights PVDF‐BST trilayered nanocomposites exhibit high ε′ ~25 and low tanδ ~0.03. Nanocomposite shows ultra‐high energy efficiency ~93% and enhanced UD ~ 7.8 J/cc. Mechanism for the excellent energy storage and dielectric properties Relies on the interfacial dipoles and distribution of the local electric field. Synthesis and properties of trilayered PVDF‐BST nanocomposite thick films.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28081</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>breakdown strength ; charge–discharge efficiency ; Current carriers ; Dielectric properties ; Dipoles ; Discharge ; discharge energy density ; Efficiency ; Electric fields ; Energy storage ; Fluorides ; Interlayers ; Nanocomposites ; Nanoparticles ; Polyvinylidene fluorides ; PVDF nanocomposites ; Spatial distribution ; Tape casting</subject><ispartof>Polymer composites, 2024-04, Vol.45 (5), p.4561-4572</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5103-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28081$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28081$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Jaidka, Sachin</creatorcontrib><creatorcontrib>Singh, Dwijendra P.</creatorcontrib><title>Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride‐Ba0.8Sr0.2TiO3 nanocomposites</title><title>Polymer composites</title><description>Poly(vinylidene)fluoride‐Ba0.8Sr0.2TiO3 (PVDF‐BST) trilayered nanocomposites (with different vol% loading of BST nanoparticles, i.e. 0.75%, 1.50%, 2.25% and 3.00%) has been processed by the tape casting technique. The upper and lower layers of the nanocomposites are casted in the same direction, whereas the middle layer is casted in the opposite direction. The trilayered PVDF‐BST nanocomposite consisting of 3.00 vol% of BST nanoparticles exhibited high dielectric permittivity (~25), low tangent loss (~0.03) and moderately high breakdown strength (BDS ~282 MV/m). Moreover, it also possesses a high discharge energy density (~7.8 J/cc at 1400 kV/cm) and efficiency (~93%). A mechanism for the excellent energy storage behavior and dielectric properties has been proposed. Where, moderately high BDS and low tangent loss are associated with the spatial distribution of the local electric field at interlayer interfaces of PVDF‐BST trilayered nanocomposites, which restricts the conduction of charge carriers at high electric field. The ultrahigh efficiency and enhanced discharge energy density is attributed to the formation of interfacial dipoles at various interfaces such as interlayer, intralayer (PVDF/PVDF), and PVDF/BST interfaces. These investigations would be adopted as a futuristic strategy for developing excellently efficient polymer‐ceramic nanocomposites for the high energy density capacitors used in pulsed power applications. Highlights PVDF‐BST trilayered nanocomposites exhibit high ε′ ~25 and low tanδ ~0.03. Nanocomposite shows ultra‐high energy efficiency ~93% and enhanced UD ~ 7.8 J/cc. Mechanism for the excellent energy storage and dielectric properties Relies on the interfacial dipoles and distribution of the local electric field. Synthesis and properties of trilayered PVDF‐BST nanocomposite thick films.</description><subject>breakdown strength</subject><subject>charge–discharge efficiency</subject><subject>Current carriers</subject><subject>Dielectric properties</subject><subject>Dipoles</subject><subject>Discharge</subject><subject>discharge energy density</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>Fluorides</subject><subject>Interlayers</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyvinylidene fluorides</subject><subject>PVDF nanocomposites</subject><subject>Spatial distribution</subject><subject>Tape casting</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkN1KAzEQhYMoWKvgIwS83pqf7iZ7qcU_EBTU6yWbTNqUNFmzW2XvfARfwJfzSYzVi-EMw5nvwEHolJIZJYSdd3rGJJF0D01oOZcFKat6H00IE6yQvBaH6Kjv19lJq4pP0NeLH5JaueUKg7VOOwh6xCoYDGGlggaDjev1SqUl5BOk5YgNhN4N2TVgH9_zKOPCEkeLgwrROu8hYRfwkJxXI6TM6KIf31wYvcvPgK3fxpTX74_PS0Vm8imRGXt2D3xH0HHTxZwA_TE6sMr3cPKvU_RyffW8uC3uH27uFhf3RccYpYU2Vphak1bCXPN5ayUhRrRVWWpTc1KXlQDWglHMAmOVUVKpuhRVS7kkpdB8is7-uF2Kr1voh2YdtynkyIYTRkQ9F7mtKSr-XO_Ow9h0yW1UGhtKmt_mm043u-abx8VO-Q-6q3vm</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Jaidka, Sachin</creator><creator>Singh, Dwijendra P.</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5103-1294</orcidid></search><sort><creationdate>20240410</creationdate><title>Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride‐Ba0.8Sr0.2TiO3 nanocomposites</title><author>Jaidka, Sachin ; Singh, Dwijendra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2211-cdf7d9c0b8e4c34bf800d7b655cd9309567e2beda2fe226da8aa9576b138057c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>breakdown strength</topic><topic>charge–discharge efficiency</topic><topic>Current carriers</topic><topic>Dielectric properties</topic><topic>Dipoles</topic><topic>Discharge</topic><topic>discharge energy density</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>Fluorides</topic><topic>Interlayers</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyvinylidene fluorides</topic><topic>PVDF nanocomposites</topic><topic>Spatial distribution</topic><topic>Tape casting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaidka, Sachin</creatorcontrib><creatorcontrib>Singh, Dwijendra P.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaidka, Sachin</au><au>Singh, Dwijendra P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride‐Ba0.8Sr0.2TiO3 nanocomposites</atitle><jtitle>Polymer composites</jtitle><date>2024-04-10</date><risdate>2024</risdate><volume>45</volume><issue>5</issue><spage>4561</spage><epage>4572</epage><pages>4561-4572</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Poly(vinylidene)fluoride‐Ba0.8Sr0.2TiO3 (PVDF‐BST) trilayered nanocomposites (with different vol% loading of BST nanoparticles, i.e. 0.75%, 1.50%, 2.25% and 3.00%) has been processed by the tape casting technique. The upper and lower layers of the nanocomposites are casted in the same direction, whereas the middle layer is casted in the opposite direction. The trilayered PVDF‐BST nanocomposite consisting of 3.00 vol% of BST nanoparticles exhibited high dielectric permittivity (~25), low tangent loss (~0.03) and moderately high breakdown strength (BDS ~282 MV/m). Moreover, it also possesses a high discharge energy density (~7.8 J/cc at 1400 kV/cm) and efficiency (~93%). A mechanism for the excellent energy storage behavior and dielectric properties has been proposed. Where, moderately high BDS and low tangent loss are associated with the spatial distribution of the local electric field at interlayer interfaces of PVDF‐BST trilayered nanocomposites, which restricts the conduction of charge carriers at high electric field. The ultrahigh efficiency and enhanced discharge energy density is attributed to the formation of interfacial dipoles at various interfaces such as interlayer, intralayer (PVDF/PVDF), and PVDF/BST interfaces. These investigations would be adopted as a futuristic strategy for developing excellently efficient polymer‐ceramic nanocomposites for the high energy density capacitors used in pulsed power applications. Highlights PVDF‐BST trilayered nanocomposites exhibit high ε′ ~25 and low tanδ ~0.03. Nanocomposite shows ultra‐high energy efficiency ~93% and enhanced UD ~ 7.8 J/cc. Mechanism for the excellent energy storage and dielectric properties Relies on the interfacial dipoles and distribution of the local electric field. Synthesis and properties of trilayered PVDF‐BST nanocomposite thick films.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.28081</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5103-1294</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2024-04, Vol.45 (5), p.4561-4572
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_3020794766
source Wiley Online Library Journals Frontfile Complete
subjects breakdown strength
charge–discharge efficiency
Current carriers
Dielectric properties
Dipoles
Discharge
discharge energy density
Efficiency
Electric fields
Energy storage
Fluorides
Interlayers
Nanocomposites
Nanoparticles
Polyvinylidene fluorides
PVDF nanocomposites
Spatial distribution
Tape casting
title Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride‐Ba0.8Sr0.2TiO3 nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20efficiency%20and%20enhanced%20discharge%20energy%20density%20at%20low%20loading%20of%20nanofiller%20in%20trilayered%20polyvinylidene%20fluoride%E2%80%90Ba0.8Sr0.2TiO3%20nanocomposites&rft.jtitle=Polymer%20composites&rft.au=Jaidka,%20Sachin&rft.date=2024-04-10&rft.volume=45&rft.issue=5&rft.spage=4561&rft.epage=4572&rft.pages=4561-4572&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28081&rft_dat=%3Cproquest_wiley%3E3020794766%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3020794766&rft_id=info:pmid/&rfr_iscdi=true